Maria Rosanna Bronzuoli
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Rosanna Bronzuoli.
Journal of Inflammation Research | 2016
Maria Rosanna Bronzuoli; Aniello Iacomino; Luca Steardo; Caterina Scuderi
Almost 47 million people suffer from dementia worldwide, with an estimated new case diagnosed every 3.2 seconds. Alzheimer’s disease (AD) accounts for approximately 60%–80% of all dementia cases. Given this evidence, it is clear dementia represents one of the greatest global public health challenges. Currently used drugs alleviate the symptoms of AD but do not treat the underlying causes of dementia. Hence, a worldwide quest is under way to find new treatments to stop, slow, or even prevent AD. Besides the classic targets of the oldest therapies, represented by cholinergic and glutamatergic systems, β-amyloid (Aβ) plaques, and tau tangles, new therapeutic approaches have other targets. One of the newest and most promising strategies is the control of reactive gliosis, a multicellular response to brain injury. This phenomenon occurs as a consequence of a persistent glial activation, which leads to cellular dysfunctions and neuroinflammation. Reactive gliosis is now considered a key abnormality in the AD brain. It has been demonstrated that reactive astrocytes surround both Aβ plaques and tau tangles. In this condition, glial cells lose some of their homeostatic functions and acquire a proinflammatory phenotype amplifying neuronal damage. So, molecules that are able to restore their physiological functions and control the neuroinflammatory process offer new therapeutic opportunities for this devastating disease. In this review, we describe the role of neuroinflammation in the AD pathogenesis and progression and then provide an overview of the recent research with the aim of developing new therapies to treat this disorder.
Frontiers in Neuroscience | 2015
Luca Steardo; Maria Rosanna Bronzuoli; Aniello Iacomino; Giuseppe Esposito; Caterina Scuderi
Data from animal models and Alzheimers disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies.
Cell Death and Disease | 2014
Caterina Scuderi; Claudia Stecca; M Valenza; P Ratano; Maria Rosanna Bronzuoli; S Bartoli; Luca Steardo; E Pompili; L Fumagalli; P Campolongo
Given the complex heterogeneity of pathological changes occurring in Alzheimer’s disease (AD), any therapeutic effort absolutely requires a multi-targeted approach, because attempts addressing only a single event may result ineffective. Palmitoylethanolamide (PEA), a naturally occurring lipid amide between palmitic acid and ethanolamine, seems to be a compound able to fulfill the criteria of a multi-factorial therapeutic approach. Here, we describe the anti-inflammatory and neuroprotective activities of systemic administration of PEA in adult male rats given intrahippocampal injection of beta amyloid 1–42 (Aβ 1–42). Moreover, to investigate the molecular mechanisms responsible for the effects induced by PEA, we co-administered PEA with the GW6471, an antagonist of peroxisome proliferator-activated receptor-α (PPAR-α). We found that Aβ 1–42 infusion results in severe changes of biochemical markers related to reactive gliosis, amyloidogenesis, and tau protein hyperphosphorylation. Interestingly, PEA was able to restore the Aβ 1–42-induced alterations through PPAR-α involvement. In addition, results from the Morris water maze task highlighted a mild cognitive deficit during the reversal learning phase of the behavioral study. Similarly to the biochemical data, also mnestic deficits were reduced by PEA treatment. These data disclose novel findings about the therapeutic potential of PEA, and suggest novel strategies that hopefully could have the potential not just to alleviate the symptoms but also to modify disease progression.
Frontiers in Pharmacology | 2014
Caterina Scuderi; Claudia Stecca; Maria Rosanna Bronzuoli; Dante Rotili; Sergio Valente; Antonello Mai; Luca Steardo
Among neurodegenerative disorders, Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. Several genetic and environmental factors have been identified; however, aging represents the most important risk factor in the development of AD. To date, no effective treatments to prevent or slow this dementia are available. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes, implicated in the control of a variety of biological processes that have the potential to modulate neurodegeneration. Here we tested the hypothesis that activation of SIRT1 or inhibition of SIRT2 would prevent reactive gliosis which is considered one of the most important hallmark of AD. Primary rat astrocytes were activated with beta amyloid 1-42 (Aβ 1-42) and treated with resveratrol (RSV) or AGK-2, a SIRT1 activator and a SIRT2-selective inhibitor, respectively. Results showed that both RSV and AGK-2 were able to reduce astrocyte activation as well as the production of pro-inflammatory mediators. These data disclose novel findings about the therapeutic potential of SIRT modulators, and suggest novel strategies for AD treatment.
Translational Psychiatry | 2018
Caterina Scuderi; Maria Rosanna Bronzuoli; Roberta Facchinetti; Lorenzo Pace; Luca Ferraro; K Broad; Gaetano Serviddio; Francesco Bellanti; Gianmauro Palombelli; Giulia Carpinelli; Rossella Canese; Silvana Gaetani; Luca Steardo; Tommaso Cassano
In an aging society, Alzheimer’s disease (AD) exerts an increasingly serious health and economic burden. Current treatments provide inadequate symptomatic relief as several distinct pathological processes are thought to underlie the decline of cognitive and neural function seen in AD. This suggests that the efficacy of treatment requires a multitargeted approach. In this context, palmitoylethanolamide (PEA) provides a novel potential adjunct therapy that can be incorporated into a multitargeted treatment strategy. We used young (6-month-old) and adult (12-month-old) 3×Tg-AD mice that received ultramicronized PEA (um-PEA) for 3 months via a subcutaneous delivery system. Mice were tested with a range of cognitive and noncognitive tasks, scanned with magnetic resonance imaging/magnetic resonance spectroscopy (MRI/MRS), and neurochemical release was assessed by microdialysis. Potential neuropathological mechanisms were assessed postmortem by western blot, reverse transcription–polymerase chain reaction (RT-PCR), and immunofluorescence. Our data demonstrate that um-PEA improves learning and memory, and ameliorates both the depressive and anhedonia-like phenotype of 3×Tg-AD mice. Moreover, it reduces Aβ formation, the phosphorylation of tau proteins, and promotes neuronal survival in the CA1 subregion of the hippocampus. Finally, um-PEA normalizes astrocytic function, rebalances glutamatergic transmission, and restrains neuroinflammation. The efficacy of um-PEA is particularly potent in younger mice, suggesting its potential as an early treatment. These data demonstrate that um-PEA is a novel and effective promising treatment for AD with the potential to be integrated into a multitargeted treatment strategy in combination with other drugs. Um-PEA is already registered for human use. This, in combination with our data, suggests the potential to rapidly proceed to clinical use.
Neuroscience | 2018
Veronica Cartocci; Martina Catallo; Massimo Tempestilli; Marco Segatto; Frank W. Pfrieger; Maria Rosanna Bronzuoli; Caterina Scuderi; Michela Servadio; Viviana Trezza; Valentina Pallottini
Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.
Archive | 2018
Roberta Facchinetti; Maria Rosanna Bronzuoli; Caterina Scuderi
The intrahippocampal injection of amyloid beta peptide (1-42) (Aβ(1-42)) represents one of the most useful animal models of Alzheimer disease. Since none of these available models fully represents the main pathological hallmarks of Alzheimer disease, stereotaxic Aβ(1-42) infusion provides researchers with an in vivo alternative paradigm. When performed by well-trained individuals, this model is the best-suited one for short-term studies focusing on the effects of Aβ(1-42) on a specific brain region or circuitry. Here, we describe all methodological phases of such a model.
Oxidative Medicine and Cellular Longevity | 2018
Maria Rosanna Bronzuoli; Roberta Facchinetti; Luca Steardo; Adele Romano; Claudia Stecca; Sergio Passarella; Tommaso Cassano; Caterina Scuderi
Alzheimers disease (AD) is a neurodegenerative disorder responsible for the majority of dementia cases in elderly people. It is widely accepted that the main hallmarks of AD are not only senile plaques and neurofibrillary tangles but also reactive astrogliosis, which often precedes detrimental deposits and neuronal atrophy. Such phenomenon facilitates the regeneration of neural networks; however, under some circumstances, like in AD, reactive astrogliosis is detrimental, depriving neurons of the homeostatic support, thus contributing to neuronal loss. We investigated the presence of reactive astrogliosis in 3×Tg-AD mice and the effects of palmitoylethanolamide (PEA), a well-documented anti-inflammatory molecule, by in vitro and in vivo studies. In vitro results revealed a basal reactive state in primary cortical 3×Tg-AD-derived astrocytes and the ability of PEA to counteract such phenomenon and improve viability of 3×Tg-AD-derived neurons. In vivo observations, performed using ultramicronized- (um-) PEA, a formulation endowed with best bioavailability, confirmed the efficacy of this compound. Moreover, the schedule of treatment, mimicking the clinic use (chronic daily administration), revealed its beneficial pharmacological properties in dampening reactive astrogliosis and promoting the glial neurosupportive function. Collectively, our results encourage further investigation on PEA effects, suggesting it as an alternative or adjunct treatment approach for innovative AD therapy.
Current Pharmaceutical Design | 2018
Maria Rosanna Bronzuoli; Roberta Facchinetti; Luca Steardo; Caterina Scuderi
Alzheimers disease (AD) is a devastating neurological illness with a heavy economic impact. Further comorbidities in combination with the social impact of this disorder increase the urgency of a clearer comprehension of its etiopathogenesis, allowing the execution of novel therapeutic strategies. Despite astrocytes have been widely described as active participant in the regulation of cerebral circuits, available data are still poor. Even less information is available about their precise role in the pathogenesis of illness. Moreover, the scant knowledge about the astrocyte-neuron interplay in health and disease still impedes pioneering discoveries. The focus of this review is to look for new and innovative pharmacological approaches against AD. In order to perform this, we used the following keywords in PubMed search engine: astrocytes, therapy, Alzheimers disease, and glia in different combinations. With this review, we collected data available in literature describing how also astrocytes besides neurons might be new potential targets for drug discovery. Different approaches currently being studied include modulation of glutamate transporters expression, astroglial genetic manipulation, free radicals inhibition, up-regulation of neurotrophins, and regulation of astrogliosis and neuroinflammation. Since several studies already demonstrated that astrocytes are definitely involved in AD pathogenesis, these cells can represent a promising new therapeutic target.
Experimental Neurology | 2019
Tommaso Cassano; Alessandro Magini; Stefano Giovagnoli; Alice Polchi; Silvio Calcagnini; Lorenzo Pace; Michele Angelo Lavecchia; Caterina Scuderi; Maria Rosanna Bronzuoli; Loredana Ruggeri; Maria Pia Gentileschi; Adele Romano; Silvana Gaetani; Federico De Marco; Carla Emiliani; Diego Dolcetta
&NA; The discovery that mammalian target of rapamycin (mTOR) inhibition increases lifespan in mice and restores/delays many aging phenotypes has led to the identification of a novel potential therapeutic target for the treatment of Alzheimers disease (AD). Among mTOR inhibitors, everolimus, which has been developed to improve the pharmacokinetic characteristics of rapamycin, has been extensively profiled in preclinical and clinical studies as anticancer and immunosuppressive agent, but no information is available about its potential effects on neurodegenerative disorders. Using a reliable mouse model of AD (3 × Tg‐AD mice), we explored whether short‐term treatment with everolimus injected directly into the brain by osmotic pumps was able to modify AD‐like pathology with low impact on peripheral organs. We first established in non‐transgenic mice the stability of everolimus at 37 °C in comparison with rapamycin and, then, evaluated its pharmacokinetics and pharmacodynamics profiles through either a single peripheral (i.p.) or central (i.c.v.) route of administration. Finally, 6‐month‐old (symptomatic phase) 3 × Tg‐AD mice were treated with continuous infusion of either vehicle or everolimus (0.167 &mgr;g/&mgr;l/day, i.c.v.) using the osmotic pumps. Four weeks after the beginning of infusion, we tested our hypothesis following an integrated approach, including behavioral (tests for cognitive and depressive‐like alterations), biochemical and immunohistochemical analyses. Everolimus (i) showed higher stability than rapamycin at 37 °C, (ii) poorly crossed the blood‐brain barrier after i.p. injection, (iii) was slowly metabolized in the brain due to a longer t1/2 in the brain compared to blood, and (iv) was more effective in the CNS when administered centrally compared to a peripheral route. Moreover, the everolimus‐induced mTOR inhibition reduced human APP/A&bgr; and human tau levels and improved cognitive function and depressive‐like phenotype in the 3 × Tg‐AD mice. The intrathecal infusion of everolimus may be effective to treat early stages of AD‐pathology through a short and cyclic administration regimen, with short‐term outcomes and a low impact on peripheral organs.