Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Rosaria Esposito is active.

Publication


Featured researches published by Maria Rosaria Esposito.


Nature Genetics | 2009

Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II

Klaus Schwarz; Achille Iolascon; Fatima Verissimo; Nikolaus S. Trede; Wyatt Horsley; Wen Chen; Barry H. Paw; Karl-Peter Hopfner; Karlheinz Holzmann; Roberta Russo; Maria Rosaria Esposito; Daniela Spano; Luigia De Falco; Katja Heinrich; Brigitte Joggerst; Markus Rojewski; Silverio Perrotta; Jonas Denecke; Ulrich Pannicke; Jean Delaunay; Rainer Pepperkok; Hermann Heimpel

Congenital dyserythropoietic anemias (CDAs) are phenotypically and genotypically heterogeneous diseases. CDA type II (CDAII) is the most frequent CDA. It is characterized by ineffective erythropoiesis and by the presence of bi- and multinucleated erythroblasts in bone marrow, with nuclei of equal size and DNA content, suggesting a cytokinesis disturbance. Other features of the peripheral red blood cells are protein and lipid dysglycosylation and endoplasmic reticulum double-membrane remnants. Development of other hematopoietic lineages is normal. Individuals with CDAII show progressive splenomegaly, gallstones and iron overload potentially with liver cirrhosis or cardiac failure. Here we show that the gene encoding the secretory COPII component SEC23B is mutated in CDAII. Short hairpin RNA (shRNA)-mediated suppression of SEC23B expression recapitulates the cytokinesis defect. Knockdown of zebrafish sec23b also leads to aberrant erythrocyte development. Our results provide in vivo evidence for SEC23B selectivity in erythroid differentiation and show that SEC23A and SEC23B, although highly related paralogous secretory COPII components, are nonredundant in erythrocyte maturation.


Blood | 2013

Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1

Immacolata Andolfo; Seth L. Alper; Lucia De Franceschi; Carla Auriemma; Roberta Russo; Luigia De Falco; Fara Vallefuoco; Maria Rosaria Esposito; David H. Vandorpe; Boris E. Shmukler; Rupa Narayan; Donatella Montanaro; Maria D'Armiento; Annalisa Vetro; Ivan Limongelli; Orsetta Zuffardi; Bertil Glader; Stanley L. Schrier; Carlo Brugnara; Gordon W. Stewart; Jean Delaunay; Achille Iolascon

Autosomal dominant dehydrated hereditary stomatocytosis (DHSt) usually presents as a compensated hemolytic anemia with macrocytosis and abnormally shaped red blood cells (RBCs). DHSt is part of a pleiotropic syndrome that may also exhibit pseudohyperkalemia and perinatal edema. We identified PIEZO1 as the disease gene for pleiotropic DHSt in a large kindred by exome sequencing analysis within the previously mapped 16q23-q24 interval. In 26 affected individuals among 7 multigenerational DHSt families with the pleiotropic syndrome, 11 heterozygous PIEZO1 missense mutations cosegregated with disease. PIEZO1 is expressed in the plasma membranes of RBCs and its messenger RNA, and protein levels increase during in vitro erythroid differentiation of CD34(+) cells. PIEZO1 is also expressed in liver and bone marrow during human and mouse development. We suggest for the first time a correlation between a PIEZO1 mutation and perinatal edema. DHSt patient red cells with the R2456H mutation exhibit increased ion-channel activity. Functional studies of PIEZO1 mutant R2488Q expressed in Xenopus oocytes demonstrated changes in ion-channel activity consistent with the altered cation content of DHSt patient red cells. Our findings provide direct evidence that R2456H and R2488Q mutations in PIEZO1 alter mechanosensitive channel regulation, leading to increased cation transport in erythroid cells.


Haematologica | 2009

A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis

Achille Iolascon; Luigia De Falco; Franck Borgese; Maria Rosaria Esposito; Rosa Anna Avvisati; Pietro Izzo; Carmelo Piscopo; Hélène Guizouarn; Andrea Biondani; Antonella Pantaleo; Lucia De Franceschi

Stomatocytoses are a group of inherited autosomal dominant hemolytic anemias and include overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis, hereditary cryohydrocytosis and familial pseudohyperkalemia. This article describes a novel variant of hereditary stomatocytosis due to a de novo band 3 mutation associated with signs of dyserythropoiesis. See related perspective article on page 1039. Background Stomatocytoses are a group of inherited autosomal dominant hemolytic anemias and include overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis, hereditary cryohydrocytosis and familial pseudohyperkalemia. Design and Methods We report a novel variant of hereditary stomatocytosis due to a de novo band 3 mutation (p. G796R-band3 CEINGE) associated with a dyserythropoietic phenotype. Band 3 genomic analysis, measurement at of hematologic parameters and red cell indices and morphological analysis of bone marrow were carried out. We then evaluated the red cell membrane permeability and ion transport systems by functional studies of the patient’s erythrocytes and Xenopus oocytes transfected with mutated band 3. We analyzed the red cell membrane tyrosine phosphorylation profile and the membrane association of the tyrosine kinases Syk and Lyn from the Src-family-kinase group, since the activity of the membrane cation transport pathways is related to cyclic phosphorylation-dephosphorylation events. Results The patient showed mild hemolytic anemia with circulating stomatocytes together with signs of dyserythropoiesis. Her red cells displayed increased Na+ content with decreased K+content and abnormal membrane cation transport activities. Functional characterization of band 3 CEINGE in Xenopus oocytes showed that the mutated band 3 is converted from being an anion exchanger (Cl−, HCO3−) to being a cation pathway for Na+ and K+. Increased tyrosine phosphorylation of some red cell membrane proteins was observed in diseased erythrocytes. Syk and Lyn membrane association was increased in the patient’s red cells compared to in normal controls, indicating perturbation of phospho-signaling pathways involved in cell volume regulation events. Conclusions Band 3 CEINGE alters function from that of anion exchange to cation transport, affects the membrane tyrosine phosphorylation profile, in particular of band 3 and stomatin, and its presence during red cell development likely contributes to dyserythropiesis.


Haematologica | 2010

Molecular analysis of 42 patients with congenital dyserythropoietic anemia type II: new mutations in the SEC23B gene and a search for a genotype-phenotype relationship

Achille Iolascon; Roberta Russo; Maria Rosaria Esposito; Roberta Asci; Carmelo Piscopo; Silverio Perrotta; Madeleine Fénéant-Thibault; Loïc Garçon; Jean Delaunay

Background The most frequent form of congenital dyserythropoietic anemia is the type II form. Recently it was shown that the vast majority of patients with congenital dyserythropoietic anemia type II carry mutations in the SEC23B gene. Here we established the molecular basis of 42 cases of congenital dyserythropoietic anemia type II and attempted to define a genotype-phenotype relationship. Design and Methods SEC23B gene sequencing analysis was performed to assess the diversity and incidence of each mutation in 42 patients with congenital dyserythropoietic anemia type II (25 described exclusively in this work), from the Italian and the French Registries, and the relationship of these mutations with the clinical presentation. To this purpose, we divided the patients into two groups: (i) patients with two missense mutations and (ii) patients with one nonsense and one missense mutation. Results We found 22 mutations of uneven frequency, including seven novel mutations. Compound heterozygosity for a missense and a nonsense mutation tended to produce a more severe clinical presentation, a lower reticulocyte count, a higher serum ferritin level, and, in some cases, more pronounced transfusion needs, than homozygosity or compound heterozygosity for two missense mutations. Homozygosity or compound heterozygosity for two nonsense mutations was never found. Conclusions This study allowed us to determine the most frequent mutations in patients with congenital dyserythropoietic anemia type II. Correlations between the mutations and various biological parameters suggested that the association of one missense mutation and one nonsense mutation was significantly more deleterious that the association of two missense mutations. However, there was an overlap between the two categories.


American Journal of Hematology | 2013

Missense mutations in the ABCB6 transporter cause dominant familialpseudohyperkalemia

Immacolata Andolfo; Seth L. Alper; Jean Delaunay; Carla Auriemma; Roberta Russo; Roberta Asci; Maria Rosaria Esposito; Alok Sharma; Boris E. Shmukler; Carlo Brugnara; Lucia De Franceschi; Achille Iolascon

Familial Pseudohyperkalemia (FP) is a dominant red cell trait characterized by increased serum [K+] in whole blood stored at or below room temperature, without additional hematological abnormalities. Functional gene mapping and sequencing analysis of the candidate genes within the 2q35–q36 critical interval identified—in 20 affected individuals among three multigenerational FP families—two novel heterozygous missense mutations in the ABCB6 gene that cosegregated with disease phenotype. The two genomic substitutions altered two adjacent nucleotides within codon 375 of ABCB6, a porphyrin transporter that, in erythrocyte membranes, bears the Langereis blood group antigen system. The ABCB6 R375Q mutation did not alter the levels of mRNA or protein, or protein localization in mature erythrocytes or erythroid precursor cells, but it is predicted to modestly alter protein structure. ABCB6 mRNA and protein levels increase during in vitro erythroid differentiation of CD34+ erythroid precursors and the erythroleukemia cell lines HEL and K562. These data suggest that the two missense mutations in residue 375 of the ABCB6 polypeptide found in affected individuals of families with chromosome 2‐linked FP could contribute to the red cell K+ leak characteristic of this condition. Am. J. Hematol. 2013.


Haematologica | 2012

Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach

Achille Iolascon; Maria Rosaria Esposito; Roberta Russo

Congenital dyserythropoietic anemias belong to a group of inherited conditions characterized by a maturation arrest during erythropoiesis with a reduced reticulocyte production in contrast with erythroid hyperplasia in bone marrow. The latter shows specific morphological abnormalities that allowed for a morphological classification of these conditions mainly represented by congenital dyserythropoietic anemias types I and II. The identification of their causative genes provided evidence that these conditions have different molecular mechanisms that induce abnormal cell maturation and division. Some altered proteins seem to be involved in the chromatin assembly, such as codanin-1 in congenital dyserythropoietic anemia I. The gene involved in congenital dyserythropoietic anemia II, the most frequent form, is SEC23B. This condition seems to belong to a group of diseases attributable to defects in the transport of newly synthesized proteins from endoplasmic reticulum to the Golgi. This review will analyze recent insights in congenital dyserythropoietic anemias types I and II. It will also attempt to clarify the relationship between mutations in causative genes and the clinical phenotype of these conditions.


American Journal of Hematology | 2010

Mutational spectrum in congenital dyserythropoietic anemia type II: Identification of 19 novel variants in SEC23B gene

Roberta Russo; Maria Rosaria Esposito; Roberta Asci; Antonella Gambale; Silverio Perrotta; Ugo Ramenghi; Gian Luca Forni; Vedat Uygun; Jean Delaunay; Achille Iolascon

SEC23B gene encodes an essential component of the coat protein complex II (COPII)‐coated vesicles. Mutations in this gene cause the vast majority the congenital dyserythropoietic anemia Type II (CDA II), a rare disorder resulting from impaired erythropoiesis. Here, we investigated 28 CDA II patients from 21 unrelated families enrolled in the CDA II International Registry. Overall, we found 19 novel variants [c.2270 A>C p.H757P; c.2149−2 A>G; c.1109+1 G>A; c.387(delG) p.L129LfsX26; c.1858 A>G p.M620V; c.1832 G>C p.R611P; c.1735 T>A p.Y579N; c.1254 T>G p.I418M; c.1015 C>T p.R339X; c.1603 C>T p.R535X; c.1654 C>T p.L552F; c.1307 C>T p.S436L; c.279+3 A>G; c. 2150(delC) p.A717VfsX7; c.1733 T>C p.L578P; c.1109+5 G>A; c.221+31 A>G; c.367 C>T p.R123X; c.1857_1859delCAT; p.I619del] in the homozygous or the compound heterozygous state. Homozygosity or compound heterozygosity for two nonsense mutations was never found. In four cases the sequencing analysis has failed to find two mutations. To discuss the putative functional consequences of missense mutations, computational analysis and sequence alignment were performed. Our data underscore the high allelic heterogeneity of CDA II, as the most of SEC23B variations are inherited as private mutations. In this mutation update, we also provided a tool to improve and facilitate the molecular diagnosis of CDA II by defining the frequency of mutations in each exon. Am. J. Hematol., 2010.


Journal of Biomedical Science | 2017

Neuroblastoma treatment in the post-genomic era

Maria Rosaria Esposito; Sanja Aveic; Anke Seydel; Gian Paolo Tonini

Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib.We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.


Oncotarget | 2016

Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

Vito Alessandro Lasorsa; Daniela Formicola; Piero Pignataro; Flora Cimmino; Francesco Maria Calabrese; Jaume Mora; Maria Rosaria Esposito; Marcella Pantile; Carlo Zanon; Marilena De Mariano; Luca Longo; Michael D. Hogarty; Carmen de Torres; Gian Paolo Tonini; Achille Iolascon; Mario Capasso

The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.


Oncotarget | 2016

Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells

Sanja Aveic; Marcella Pantile; Anke Seydel; Maria Rosaria Esposito; Carlo Zanon; Gary Li; Gian Paolo Tonini

Neuroblastoma (NB) is a threatening childhood malignancy. Its prognosis is affected by several morphological, and biological characteristics, including the constitutive expression of ALK tyrosine kinase. In this study we examined the therapeutic potential of a novel ALK inhibitor, entrectinib, in obliterating NB tumor cells. Entrectinib showed the growth-inhibitory effects on NB cells with a 50% inhibitory concentration range of 0.03–5 μM. In the ALK-dependent cells, entrectinib mediated G1-arrest, which was associated with modified expression of multiple cell-cycle regulators. Down-regulation of Ki-67, and attenuated phosphorylation of ERK1/2, and STAT3, correlated with observed antiproliferative capacity of entrectinib. Initial cytostatic activity of entrectinib was followed by concentration-dependent apoptotic cell death, and Caspase-3 activation. However, we delineated a reduced sensitivity of ALK mutated NB cells to entrectinib, and demonstrated strong activation of autophagy in SH-SY5YF1174L NB cell line. Abrogation of autophagy by chloroquine increased significantly the toxicity of entrectinib, as confirmed by enhanced death rate, and PARP protein cleavage in SH-SY5YF1174L cells. In aggregate, our data show that entrectinib inhibits proliferation, and induces G1-arrest, and apoptosis in NB cells. We propose entrectinib for further consideration in treatment of NB, and recommend pharmacological inhibition of autophagy to be explored for a combined therapeutic approach in NB patients that might develop resistance to entrectinib.

Collaboration


Dive into the Maria Rosaria Esposito's collaboration.

Top Co-Authors

Avatar

Achille Iolascon

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Russo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Asci

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Immacolata Andolfo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonella Gambale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carmelo Piscopo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigia De Falco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge