Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Ruth Pazos is active.

Publication


Featured researches published by María Ruth Pazos.


Glia | 2009

Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease.

Onintza Sagredo; Sara González; Ilia Aroyo; María Ruth Pazos; Cristina Benito; Isabel Lastres-Becker; Juan Pablo Romero; Rosa M. Tolón; Raphael Mechoulam; Emmanuel Brouillet; Julián Romero; Javier Fernández-Ruiz

Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntingtons disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate‐induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild‐type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX‐42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor‐α (TNF‐α) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF‐α. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.


Molecular and Cellular Endocrinology | 2008

Role of CB2 receptors in neuroprotective effects of cannabinoids.

Javier Fernández-Ruiz; María Ruth Pazos; Moisés García-Arencibia; Onintza Sagredo; José A. Ramos

CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons. Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimers disease, Huntingtons chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis. The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.


Brain Research | 2009

The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages.

Rosa María Tolón; Estefanía Núñez; María Ruth Pazos; Cristina Benito; Ana Isabel Castillo; José Martínez-Orgado; Julián Romero

The endocannabinoid system is a promising therapeutic target in a wide variety of diseases. However, the non-desirable psychotropic effects of natural and synthetic cannabinoids have largely counteracted their clinical usefulness. These effects are mostly mediated by cannabinoid receptors of the CB(1) type, that exhibit a wide distribution in neuronal elements of the CNS. Thus, the presence of other elements of this system in the CNS, such as CB(2) receptors, may open new possibilities for the development of cannabinoid-based therapies. These receptors are almost absent from the CNS in normal conditions but are up-regulated in glial cells under chronic neuroinflammatory stimuli, as has been described in Alzheimers disease. To understand the functional role of these receptors, we tested their role in the process of beta-amyloid removal, that is currently considered as one of the most promising experimental approaches for the treatment of this disease. Our results show that a CB(2) agonist (JWH-015) is capable of inducing the removal of native beta-amyloid removal from human frozen tissue sections as well as of synthetic pathogenic peptide by a human macrophage cell line (THP-1). Remarkably, this effect was achieved at low doses (maximum effect at 10 nM) and was specific for this type of cells, as U373MG astrocytoma cells did not respond to the treatment. The effect was CB(2)-mediated, at least partially, as the selective CB(2) antagonist SR144528 prevented the JWH-015-induced plaque removal in situ. These data corroborate the possible therapeutic interest of CB(2) cannabinoid specific chemicals in the treatment of Alzheimers disease.


Molecular Neurobiology | 2007

The endocannabinoid system and Alzheimer's disease.

Cristina Benito; Estefanía Núñez; María Ruth Pazos; Rosa M. Tolón; Julián Romero

The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.


Journal of Histochemistry and Cytochemistry | 2008

Cannabinoid CB1 receptors are expressed by parietal cells of the human gastric mucosa.

María Ruth Pazos; Rosa M. Tolón; Cristina Benito; Conrado Fernández Rodríguez; Juan José Gorgojo; Manuel Nevado; Mariano Álvarez; Francisco Arias; Francisca Almodóvar; María Teresa Pérez Fernández; José L. Lledó; Sara González; J.J. Fernández-Ruiz; Julián Romero

Experimental data suggest that the endogenous cannabinoid system is involved in gastric function in different animal species. In most of them, CB1 receptors have been localized on vagal terminals innervating the external wall of the stomach. We aimed at studying the putative presence and distribution of these receptors in the human gastric mucosa. To this end, we first performed Western blotting, RT-PCR, in situ hybridization, and immunohistochemical analysis of CB1 protein distribution in biopsy samples of healthy individuals. To determine the precise cell populations expressing CB1 receptors, we performed double immunofluorescence plus confocal microscopy analysis of the same samples. Our results show that CB1 receptors are present in the gastric epithelium of the mucosa. Specifically, they are expressed by a subpopulation of mucosal cells, the acid-secreting parietal cells, as shown by double immunohistochemical staining and by their differential abundance in subregions of the gastric mucosa. These results reinforce the notion of a prominent role for the endocannabinoid system in the gastric function in humans and postulate the use of cannabinoid CB1 receptors in parietal cells as new therapeutic targets for the regulation of gastric acid production.


Neurobiology of Disease | 2015

Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.

Carmen Vázquez; Rosa M. Tolón; María Ruth Pazos; Marta Moreno; Erin C. Koester; Benjamin F. Cravatt; Cecilia J. Hillard; Julián Romero

Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.


Neuroscience | 2008

Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: Evidence for a role of these receptors in axonal growth and guidance

M. Gómez; Mariluz Hernández; María Ruth Pazos; R.M. Tolón; J. Romero; J.J. Fernández-Ruiz

There is recent evidence supporting the notion that the cannabinoid signaling system plays a modulatory role in the regulation of cell proliferation and migration, survival of neural progenitors, neuritic elongation and guidance, and synaptogenesis. This assumption is based on the fact that cannabinoid 1-type receptors (CB(1) receptors) and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in these processes. We have recently presented in vivo evidence showing that this modulatory action might be exerted through regulating the synthesis of the cell adhesion molecule L1 that is also a key element for those processes. To further explore this issue, we conducted here immunohistochemical studies aimed at determining the cellular substrates of CB(1) receptor-L1 interactions in the rat brain during late fetal development. In this period, we previously found that the activation of CB(1) receptors increased L1 synthesis in several forebrain white matter regions but not in gray matter areas. Using double labeling studies, we observed here colocalization of both proteins in fiber tracts including the corpus callosum, the adjacent subcortical white matter, the internal capsule and the anterior commissure. Experiments conducted with cultures of fetal rat cortical nerve cells revealed that L1 is present mainly in neurons but not in glial cells. This fact, together with the results obtained in the double labeling studies, would indicate that L1 and CB(1) receptors should possibly be present in axons elongating through these white matter tracts, or, alternatively, in migrating neurons. Further experiments confirmed the presence of CB(1) receptors in elongating axons, since these receptors colocalized with growth-associated protein 43 (GAP-43), a marker of growth cones, but not with synaptophysin, a marker of active synaptic terminals, in the same forebrain white matter regions. Lastly, using cultured fetal rat cortical neurons, we also observed that the activation of cannabinoid receptors increased the levels of the full-length L1 and altered those of some active proteolytic fragments of this protein whose generation has been associated with specific steps in the process of neuritic elongation in cultured neurons. In summary, we have demonstrated that the effects caused by cannabinoid agonists on L1 are facilitated by the colocalization of this cell adhesion molecule with CB(1) receptors in several forebrain white matter regions during fetal brain development. We have provided strong evidence that this phenomenon occurs in axons elongating through these white matter tracts, and we have explored in vitro how cannabinoid receptors influence L1 levels. Considering the role played by L1 in different events related to neural development, our observations support the occurrence of a physiological mechanism by which the cannabinoid system might regulate the process of axonal growth and guidance through regulating the synthesis and function of L1.


Frontiers in Neuroscience | 2016

Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

Hector Lafuente; María Ruth Pazos; Antonia Alvarez; Nagat Mohammed; Martín Santos; Maialen Arizti; Francisco J. Alvarez; José Martínez-Orgado

Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.


Pharmacological Research | 2016

Biological characterization of PM226, a chromenoisoxazole, as a selective CB2 receptor agonist with neuroprotective profile

María Gómez-Cañas; Paula Morales; L. García-Toscano; C. Navarrete; Eduardo Muñoz; Nadine Jagerovic; Javier Fernández-Ruiz; Moisés García-Arencibia; María Ruth Pazos

Cannabinoids have emerged as promising neuroprotective agents due to their capability to activate specific targets, which are involved in the control of neuronal homeostasis and survival. Specifically, those ligands that selectively target and activate the CB2 receptor may be useful for their anti-inflammatory and neuroprotective properties in various neurological disorders, with the advantage of being devoid of psychotropic effects associated with the activation of CB1 receptors. The aim of this work has been to investigate the neuroprotective properties of 7-(1,1-dimethylheptyl)-4,4-dimethyl-9-methoxychromeno[3,4-d]isoxazole (PM226), a compound derived from a series of chromeno-isoxazoles and -pyrazoles, which seems to have a promising profile related to the CB2 receptor. The compound binds selectively to this receptor with an affinity in the nanomolar range (Ki=12.8±2.4nM). It has negligible affinity for the CB1 receptor (Ki>40000nM) and no activity at the GPR55. PM226 was also evaluated in GTPγS binding assays specific to the CB2 receptor showing agonist activity (EC50=38.67±6.70nM). In silico analysis of PM226 indicated that it has a good pharmacokinetic profile and a predicted ability to cross the blood-brain barrier. Next, PM226 was investigated in an in vitro model to explore its anti-inflammatory/neuroprotective properties. Conditioned media were collected from LPS-stimulated cultures of BV2 microglial cell line in the absence or presence of different doses of PM226, and then media were added to cultured M213-2O neuronal cells to record their influence on cell viability evaluated using MTT assays. As expected, cell viability was significantly reduced by the exposure to these conditioned media, while the addition of PM226 attenuated this reduction in a dose-dependent manner. This effect was reversed by co-incubating with the CB2 antagonist SR144528, thus confirming the involvement of CB2 receptors, whereas the addition of PM226 to neuronal cultures instead cultured BV2 cells was not effective. PM226 has also been studied in an in vivo model of mitochondrial damage generated by intrastriatal application of malonate in rats. MRI analysis showed that PM226 administration decreased the volume of the striatal lesion caused by malonate, effect that was confirmed after the histopathological evaluation (Nissl staining, Iba-1 immunostaining and TUNEL assay) of striatal sections derived from malonate-lesioned rats in the absence or presence of PM226. Again, the beneficial effects of PM226 were dependent on the activation of CB2 receptors as they were reversed by blocking these receptors with AM630. Overall, PM226 has shown to have a promising neuroprotective profile derived from its ability to selectively activate CB2 receptor, so that it could be a useful disease-modifying agent in those neurodegenerative pathologies in which the activation of these receptors may have therapeutic value.


Pediatric Research | 2017

Cannabidiol reduces lung injury induced by hypoxic-ischemic brain damage in newborn piglets

Luis Arruza; María Ruth Pazos; Nagat Mohammed; Natalia Escribano; Hector Lafuente; Martín Santos; Francisco J. Alvarez-Diaz; William Hind; José Martínez-Orgado

BackgroundBrain hypoxic–ischemic (HI) damage induces distant inflammatory lung damage in newborn pigs. We aimed to investigate the effects of cannabidiol (CBD) on lung damage in this scenario.MethodsNewborn piglets received intravenous vehicle, CBD, or CBD+WAY100635 (5-HT1A receptor antagonist) after HI brain damage (carotid flow interruption and FiO2 0.10 for 30 min). Total lung compliance (TLC), oxygenation index (OI), and extravascular lung water content (EVLW) were monitored for 6 h. Histological damage, interleukin (IL)-1β concentration, and oxidative stress were assessed in brain and lung tissue. Total protein content was determined in bronchoalveolar lavage fluid (BALF).ResultsCBD prevented HI-induced deleterious effects on TLC and OI and reduced lung histological damage, modulating inflammation (decreased leukocyte infiltration and IL-1 concentration) and reducing protein content in BALF and EVLW. These effects were related to CBD-induced anti-inflammatory changes in the brain. HI did not increase oxidative stress in the lungs. In the lungs, WAY100635 blunted the beneficial effects of CBD on histological damage, IL-1 concentration, and EVLW.ConclusionsCBD reduced brain HI-induced distant lung damage, with 5-HT1A receptor involvement in these effects. Whether the effects of CBD on the lungs were due to the anti-inflammatory effects on the brain or due to the direct effects on the lungs remains to be elucidated.

Collaboration


Dive into the María Ruth Pazos's collaboration.

Top Co-Authors

Avatar

Julián Romero

Universidad Francisco de Vitoria

View shared research outputs
Top Co-Authors

Avatar

Cristina Benito

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Tolón

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Javier Fernández-Ruiz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Estefanía Núñez

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

José Martínez-Orgado

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Gómez-Cañas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Moisés García-Arencibia

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Nadine Jagerovic

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paula Morales

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge