Maria Serrano
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Serrano.
Disease Models & Mechanisms | 2009
Mingda Han; Maria Serrano; Rosana Lastra-Vicente; Pilar Brinez; Ganesh Acharya; James C. Huhta; Ren Chen; Kersti K. Linask
SUMMARY Elevated plasma homocysteine (HCy), which results from folate (folic acid, FA) deficiency, and the mood-stabilizing drug lithium (Li) are both linked to the induction of human congenital heart and neural tube defects. We demonstrated previously that acute administration of Li to pregnant mice on embryonic day (E)6.75 induced cardiac valve defects by potentiating Wnt–β-catenin signaling. We hypothesized that HCy may similarly induce cardiac defects during gastrulation by targeting the Wnt–β-catenin pathway. Because dietary FA supplementation protects from neural tube defects, we sought to determine whether FA also protects the embryonic heart from Li- or HCy-induced birth defects and whether the protection occurs by impacting Wnt signaling. Maternal elevation of HCy or Li on E6.75 induced defective heart and placental function on E15.5, as identified non-invasively using echocardiography. This functional analysis of HCy-exposed mouse hearts revealed defects in tricuspid and semilunar valves, together with altered myocardial thickness. A smaller embryo and placental size was observed in the treated groups. FA supplementation ameliorates the observed developmental errors in the Li- or HCy-exposed mouse embryos and normalized heart function. Molecular analysis of gene expression within the avian cardiogenic crescent determined that Li, HCy or Wnt3A suppress Wnt-modulated Hex (also known as Hhex) and Islet-1 (also known as Isl1) expression, and that FA protects from the gene misexpression that is induced by all three factors. Furthermore, myoinositol with FA synergistically enhances the protective effect. Although the specific molecular epigenetic control mechanisms remain to be defined, it appears that Li or HCy induction and FA protection of cardiac defects involve intimate control of the canonical Wnt pathway at a crucial time preceding, and during, early heart organogenesis.
Birth Defects Research Part A-clinical and Molecular Teratology | 2008
Jizhen Chen; Mingda Han; Shyam M. Manisastry; Patrizia Trotta; Maria Serrano; James C. Huhta; Kersti K. Linask
BACKGROUND Lithium (Li) has been associated with cardiac teratogenicity in the developing fetus. We took advantage of the association of therapeutic administration of Li with an increase in heart defects to gain insight into both normal and pathological heart and valve development with GSK-3 inhibition. The objective of this study was to define whether Li mimicry of canonical Wnt/beta-catenin signaling induces cardiac valve defects. METHODS Li was administered by a single intraperitoneal injection to the pregnant mouse on embryonic day E6.75, much earlier than heretofore analyzed. On E15.5 developing heart defects were defined by Doppler ultrasound. The embryonic hearts were analyzed for changes in patterning of active canonical Wnt expression and nuclear factor of the activated T cells-c1 (NFATc1), both key regulators of valve development. Li-exposed chick embryos were used to define the early cell populations during gastrulation that are susceptible to GSK-3 inhibition and may relate to valve formation. RESULTS Li exposure during gastrulation decreased the number of prechordal plate (PP) cells that reached the anterior intestinal portal, a region associated with valve development. Li decreased expression of Hex, an endoderm cardiac inducing molecule, normally also expressed by the PP cells, and of Sox 4 at the anterior intestinal portal and NFAT, critical factors in valvulogenesis. CONCLUSIONS Cells existing already during gastrulation are associated with valve formation days later. The Wnt/beta-catenin signaling in PP cells is normally repressed by Wnt antagonists and Hex is up-regulated. The antagonism occurring at the receptor level is bypassed by Li exposure by its intracellular inactivation of GSK-3 directly to augment Wnt signaling.
American Journal of Obstetrics and Gynecology | 2012
Mingda Han; Ana Luisa Neves; Maria Serrano; Pilar Brinez; James C. Huhta; Ganesh Acharya; Kersti K. Linask
OBJECTIVE Mouse embryonic exposure to alcohol, lithium, and homocysteine results in intrauterine growth restriction (IUGR) and cardiac defects. Our present study focused on the placental effects. We analyzed the hypothesis that expression of nonmuscle myosin (NMM)-II isoforms involved in cell motility, mechanosensing, and extracellular matrix assembly are altered by the 3 factors in human trophoblast (HTR8/SVneo) cells in vitro and in the mouse placenta in vivo. STUDY DESIGN After exposure during gastrulation to alcohol, homocysteine, or lithium, ultrasonography defined embryos exhibiting abnormal placental blood flow. RESULTS NMM-IIA/NMM-IIB are differentially expressed in trophoblasts and in mouse placental vascular endothelial cells under pathological conditions. Misexpression of NMM-IIA/NMM-IIB in the affected placentas continued stably to midgestation but can be prevented by folate and myoinositol supplementation. CONCLUSION It is concluded that folate and myoinositol initiated early in mouse pregnancy can restore NMM-II expression, permit normal placentation/embryogenesis, and prevent IUGR induced by alcohol, lithium, and homocysteine.
Experimental Biology and Medicine | 2011
Anteneh Addisu; William R. Gower; Maria Serrano; Daniel Villarreal; John R. Dietz
Our recent study showed that intravenously administered B-type natriuretic peptide (BNP) decreases gastric emptying and intestinal absorption in mice. We aimed to test whether acute myocardial injury and heart failure have similar effects. Wild-type (WT) and natriuretic peptide receptor type A (NPR-A) knockout (KO) mice underwent cryoinfarction (myocardial infarction [MI]) of the left ventricle (LV) versus sham. LV dysfunction was confirmed by echocardiography. Percent gastric emptying and intestinal absorption were measured and analyzed one and two weeks after infarction, by gavage feeding the mice with fluorescein-isothiocyanate-dextran. Ejection fraction was 48 ± 3% versus 64 ± 2% (P < 0.05) and fractional shortening was 24 ± 2% versus 35 ± 2% (P < 0.01), MI versus sham, respectively. BNP levels (pg/mL) were 4292 ± 276 one week after MI versus 105 ± 11 in sham (n = 5, P < 0.05) and 1964 ± 755 two weeks after MI (n = 5, P < 0.05). Gastric emptying was significantly decreased, 68 ± 6% in MI versus 89 ± 3% in sham (n = 5, P < 0.05) one week after MI and 82 ± 0.5% versus 98 ± 0.4%, MI versus sham (n = 5, P < 0.05), two weeks post-MI. Absorption, measured in relative plasma fluorescence units in WT mice, was 350 ± 79 in MI versus 632 ± 121 in sham (n = 6, P < 0.05). KO mice did not show a significant difference in emptying or absorption compared with sham. These findings suggest that MI and LV dysfunction decrease gastric emptying and absorption in mice through a mechanism that involves NPR-A.
PLOS ONE | 2014
Nils Thomas Songstad; Maria Serrano; Vasilis Sitras; Davis Johansen; Kirsti Ytrehus; Ganesh Acharya
Background Coronary flow reserve (CFR) is used as a measure of coronary endothelial function. We investigated the effect of increased afterload on CFR of pregnant and non-pregnant rats. Methods Afterload increase in Wister rats (both pregnant and non-pregnant) was achieved by the infusion of angiotensin II (Ang II) for ∼10 days or by subjecting them to transverse aortic constriction (TAC) for ∼14 days. Control groups were infused with 0.9% NaCl or had sham surgery, respectively. In pregnant rats, the experiments were performed close to term gestation. Doppler velocity waveforms of the left main coronary artery were recorded using a high resolution ultrasound imaging system (Vevo 770, VisualSonics, Canada) at baseline while the animals were anesthetized with 1.5% inhaled isoflurane, and during maximal coronary dilatation obtained by the inhalation of 3.5% of isoflurane. CFR was calculated as the ratio between the peak coronary flow velocities (CFRpeak) and the velocity-time integrals (CFRVTI) recorded at hyperemia and at baseline. Results CFR could be calculated in 60 of 75 (80%) animals. There were no differences in CFR between intervention and control groups irrespective of whether afterload was increased by Ang II or TAC. In the TAC-study CFRpeak (1.54±0.07 vs 1.85±0.17; p = 0.03) was decreased in pregnant compared to non-pregnant shams. When sham animals from both studies were pooled together both CFRpeak (1.42±0.07 vs 1.86±0.16; p = 0.005) as well as CFRVTI (1.45±0.07 vs 1.78±0.12; p = 0.03) were significantly lower in pregnant rats compared to non-pregnant. Conclusions CFR can be measured non-invasively in rats using Doppler echocardiography and high concentrations of inhaled isoflurane as a coronary vasodilator. In pregnant rats, CFR is reduced close to term. CFR is not affected by increased left ventricular afterload caused by chronic Ang II infusion or TAC.
Current Opinion in Pediatrics | 2005
James C. Huhta; Alfred Asante-Korang; Maria Serrano; Suma Gudur
Purpose of review Biochemical markers are available to detect cardiac involvement in many pediatric disease states and should be considered. Recent findings Analyses of three markers are readily available in clinical laboratories for improved diagnosis. Summary Increased workload of the heart has been associated with the release of biochemical markers (natriuretic peptides and cardiac enzymes) that indicate that a new genetic program has been activated and maladaptation is occurring in the atria, ventricles, or both. This review summarizes those that have been identified in fetal and pediatric practice. The expression of such markers is traced from early embryonic development to fetal life, to the neonate, to childhood, and then to adult life.
American Journal of Obstetrics and Gynecology | 2006
Maria Serrano; Kersti K. Linask; Ganesh Acharya; Jizhen Chen; Mingda Han; James C. Huhta
The FASEB Journal | 2015
Maria Serrano; Maria del Carmen Aguirre; Deissy Herrera-Covarrubias; David G. Munoz; Gonzalo E. Aranda-Abreu; María Elena Hernández
The FASEB Journal | 2010
Ida Khobahy; Symone San Miguel; Maria Serrano; Megan Miller; Kathy K.H. Svoboda; M. Douglas Benson
The FASEB Journal | 2009
Wenli Yu; Maria Serrano; Kathy K.H. Svoboda