Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Silvina Molinuevo is active.

Publication


Featured researches published by María Silvina Molinuevo.


Cancer Chemotherapy and Pharmacology | 2004

Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: role of apoptosis and oxidative stress

María Silvina Molinuevo; Daniel A. Barrio; Ana María Cortizo; Susana B. Etcheverry

BackgroundVanadium derivatives have been reported to display different biological effects, and in particular antineoplastic activity has been demonstrated in both in vivo and in vitro studies.PurposeTo study the effect of two new organic vanadyl(IV) complexes (one with glucose, GluVO, and the other with naproxen, NapVO) in osteosarcoma cells.MethodsUMR106 osteosarcoma cells and, for comparison, nontransformed MC3T3E1 osteoblasts were used. Proliferation and differentiation were assessed using the crystal violet assay and ALP specific activity, respectively. Morphological alterations were assessed by light microscopy. Lipid peroxidation was evaluated in terms of production of thiobarbituric acid-reactive substances (TBARS) and apoptosis was measured using annexin V. Extracellular regulated kinase (Erk) activation was investigated by Western blotting.ResultsVanadium complexes caused morphological alterations and they strongly inhibited UMR106 cell proliferation and differentiation. In contrast, in MC3T3E1 cells, these vanadium derivatives had a relatively weak action. In UMR106 tumoral cells there was a significant increase in TBARS production. Both vanadium complexes induced apoptosis and activation of Erk. PD98059, an inhibitor of Erk phosphorylation, did not block the vanadium-induced antitumoral action. However, the antioxidants vitamins C and E abrogated the apoptosis and TBARS production induced by the vanadium complexes.ConclusionsGluVO and NapVO exerted an antitumoral effect in UM106 osteosarcoma cells. They inhibited cell proliferation and differentiation. While the Erk cascade seems not to be directly related to the bioactivity of these vanadium derivatives, the action of both vanadium complexes with organic ligands may be mediated by apoptosis and oxidative stress.


BMC Clinical Pathology | 2001

A simple method to assess the oxidative susceptibility of low density lipoproteins

Adriana Elena Scoccia; María Silvina Molinuevo; Antonio Desmond McCarthy; Ana María Cortizo

BackgroundOxidative modification of low density lipoproteins (LDL) is recognized as one of the major processes involved in atherogenesis. The in vitro standardized measurement of LDL oxidative susceptibility could thus be of clinical significance. The aim of the present study was to establish a method which would allow the evaluation of oxidative susceptibility of LDL in the general clinical laboratory.ResultsLDL was isolated from human plasma by selective precipitation with amphipathic polymers. The ability of LDL to form peroxides was assessed by measuring thiobarbituric acid reactive substances (TBARS) after incubation with Cu2+ and H2O2. Reaction kinetics showed a three-phase pattern (latency, propagation and decomposition phases) which allowed us to select 150 min as the time point to stop the incubation by cooling and EDTA addition. The mixture Cu2+/H2O2 yielded more lipoperoxides than each one on its own at the same time end-point. Induced peroxidation was measured in normal subjects and in type 2 diabetic patients. In the control group, results were 21.7 ± 1.5 nmol MDA/mg LDL protein, while in the diabetic group results were significantly increased (39.0 ± 3.0 nmol MDA/mg LDL protein; p < 0.001).Conclusiona simple and useful method is presented for the routine determination of LDL susceptibility to peroxidation in a clinical laboratory.


Diabetes Research and Clinical Practice | 2013

Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: Preventive effects of metformin

María José Tolosa; Sara Rocío Chuguransky; Claudia Sedlinsky; León Schurman; Antonio Desmond McCarthy; María Silvina Molinuevo; Ana María Cortizo

AIMS Diabetes mellitus is associated with metabolic bone disease and increased low-impact fractures. The insulin-sensitizer metformin possesses in vitro, in vivo and ex vivo osteogenic effects, although this has not been adequately studied in the context of diabetes. We evaluated the effect of insulin-deficient diabetes and/or metformin on bone microarchitecture, on osteogenic potential of bone marrow progenitor cells (BMPC) and possible mechanisms involved. METHODS Partially insulin-deficient diabetes was induced in rats by nicotinamide/streptozotocin-injection, with or without oral metformin treatment. Femoral metaphysis micro-architecture, ex vivo osteogenic potential of BMPC, and BMPC expression of Runx-2, PPARγ and receptor for advanced glycation endproducts (RAGE) were investigated. RESULTS Histomorphometric analysis of diabetic femoral metaphysis demonstrated a slight decrease in trabecular area and a significant reduction in osteocyte density, growth plate height and TRAP (tartrate-resistant acid phosphatase) activity in the primary spongiosa. BMPC obtained from diabetic animals showed a reduction in Runx-2/PPARγ ratio and in their osteogenic potential, and an increase in RAGE expression. Metformin treatment prevented the diabetes-induced alterations in bone micro-architecture and BMPC osteogenic potential. CONCLUSION Partially insulin-deficient diabetes induces deleterious effects on long-bone micro-architecture that are associated with a decrease in BMPC osteogenic potential, which could be mediated by a decrease in their Runx-2/PPARγ ratio and up-regulation of RAGE. These diabetes-induced alterations can be totally or partially prevented by oral administration of metformin.


European Journal of Pharmacology | 2011

Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats

Claudia Sedlinsky; María Silvina Molinuevo; Ana María Cortizo; María José Tolosa; Juan Ignacio Felice; María Laura Sbaraglini; León Schurman; Antonio Desmond McCarthy

Long-term treatment with the insulin-sensitizer rosiglitazone reduces bone mass and increases fracture risk. We have recently shown that orally administered metformin stimulates bone reossification and increases the osteogenic potential of bone marrow progenitor cells (BMPC). In the present study we investigated the effect of a 2-week metformin and/or rosiglitazone treatment on bone repair, trabecular bone microarchitecture and BMPC osteogenic potential, in young male Sprague-Dawley rats. Compared to untreated controls, rosiglitazone monotherapy decreased bone regeneration, femoral metaphysis trabecular area, osteoblastic and osteocytic density, and TRAP activity associated with epiphyseal growth plates. It also decreased the ex vivo osteogenic commitment of BMPC, inducing an increase in PPARγ expression, and a decrease in Runx2/Cbfa1 expression, in AMP-kinase phosphorylation, and in osteoblastic differentiation and mineralization. After monotherapy with metformin, with the exception of PPARγ expression which was blunted, all of the above parameters were significantly increased (compared to untreated controls). Metformin/rosiglitazone co-treatment prevented all the in vivo and ex vivo anti-osteogenic effects of rosiglitazone monotherapy, with a reversion back to control levels of PPARγ, Runx2/Cbfa1 and AMP-kinase phosphorylation of BMPC. In vitro co-incubation of BMPC with metformin and compound C-an inhibitor of AMPK phosphorylation-abrogated the metformin-induced increase in type-1 collagen production, a marker of osteoblastic differentiation. In conclusion, in rodent models metformin not only induces direct osteogenic in vivo and ex vivo actions, but when it is administered orally in combination with rosiglitazone it can prevent several of the adverse effects that this thiazolidenedione shows on bone tissue.


Cancer Chemotherapy and Pharmacology | 2008

Vanadium(IV) complexes inhibit adhesion, migration and colony formation of UMR106 osteosarcoma cells

María Silvina Molinuevo; Ana María Cortizo; Susana B. Etcheverry

Vanadium is a trace element widely distributed in the environment. In vertebrates it is mainly stored in bone tissue. The unique cellular environment in the bone and the variety of interactions that mediate cancer metastasis determine that certain types of cancer, such as breast and prostate cancer, preferentially metastize in the skeleton. Since this effect usually signifies serious morbidity and grave prognosis there is an increasing interest in the development of new treatments for this pathology. The present work shows that vanadium complexes can inhibit some parameters related to cancer metastasis such as cell adhesion, migration and clonogenicity. We have also investigated the role of protein kinase A in these processes.


Metabolism-clinical and Experimental | 2014

Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats

Juan Ignacio Felice; María Virginia Gangoiti; María Silvina Molinuevo; Antonio Desmond McCarthy; Ana María Cortizo

OBJECTIVE The aims of this study were: first, to evaluate the possible effects of a fructose rich diet (FRD)-induced metabolic syndrome (MS) on different aspects of long bone histomorphometry in young male rats; second, to investigate the effects of this diet on bone tissue regeneration; and third, to correlate these morphometric alterations with changes in the osteogenic/adipogenic potential and expression of specific transcription factors, of marrow stromal cells (MSC) isolated from rats with fructose-induced MS. MATERIALS/METHODS MS was induced in rats by treatment with a FRD for 28 days. Halfway through treatment, a parietal wound was made and bone healing was evaluated 14 days later. After treatments, histomorphometric analysis was performed in dissected femoral and parietal bones. MSC were isolated from the femora of control or fructose-treated rats and differentiated either to osteoblasts (evaluated by type 1 collagen, Alkaline phosphatase and extracellular nodule mineralization) or to adipocytes (evaluated by intracellular triglyceride accumulation). Expression of Runx2 and PPARγ was assessed by Western blot. RESULTS Fructose-induced MS induced deleterious effects on femoral metaphysis microarchitecture and impaired bone regeneration. Fructose treatment decreased the osteogenic potential of MSC and Runx2 expression. In addition, it increased the adipogenic commitment of MSC and PPARγ expression. CONCLUSIONS Fructose-induced MS is associated with deleterious effects on bone microarchitecture and with a decrease in bone repair. These alterations could be due to a deviation in the adipogenic/osteogenic commitment of MSC, probably by modulation of the Runx2/PPARγ ratio.


European Journal of Pharmacology | 2014

Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells.

María Laura Sbaraglini; María Silvina Molinuevo; Claudia Sedlinsky; León Schurman; Antonio Desmond McCarthy

Diabetes mellitus is associated with a decrease in bone quality and an increase in fracture incidence. Additionally, treatment with anti-diabetic drugs can either adversely or positively affect bone metabolism. In this study we evaluated: the effect of a 3-week oral treatment with saxagliptin on femoral microarchitecture in young male non-type-2-diabetic Sprague Dawley rats; and the in vitro effect of saxagliptin and/or fetal bovine serum (FBS), insulin or insulin-like growth factor-1 (IGF1), on the proliferation, differentiation (Runx2 and PPAR-gamma expression, type-1 collagen production, osteocalcin expression, mineralization) and extracellular-regulated kinase (ERK) activation, in bone marrow stromal cells (MSC) obtained from control (untreated) rats and in MC3T3E1 osteoblast-like cells. In vivo, oral saxagliptin treatment induced a significant decrease in the femoral osteocytic and osteoblastic density of metaphyseal trabecular bone and in the average height of the proximal cartilage growth plate; and an increase in osteoclastic tartrate-resistant acid phosphatase (TRAP) activity of the primary spongiosa. In vitro, saxagliptin inhibited FBS-, insulin- and IGF1-induced ERK phosphorylation and cell proliferation, in both MSC and MC3T3E1 preosteoblasts. In the absence of growth factors, saxagliptin had no effect on ERK activation or cell proliferation. In both MSC and MC3T3E1 cells, saxagliptin in the presence of FBS inhibited Runx2 and osteocalcin expression, type-1 collagen production and mineralization, while increasing PPAR-gamma expression. In conclusion, orally administered saxagliptin induced alterations in long-bone microarchitecture that could be related to its in vitro down-regulation of the ERK signaling pathway for insulin and IGF1 in MSC, thus decreasing the osteogenic potential of these cells.


European Journal of Pharmacology | 2013

Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation

Juan Manuel Fernández; María Silvina Molinuevo; Claudia Sedlinsky; León Schurman; Ana María Cortizo; Antonio Desmond McCarthy

Accumulation of advanced glycation endproducts (AGEs) in bone tissue occurs in ageing and in Diabetes mellitus, and is partly responsible for the increased risk of low-stress bone fractures observed in these conditions. In this study we evaluated whether the anti-osteoporotic agent strontium ranelate can prevent the deleterious effects of AGEs on bone cells, and possible mechanisms of action involved. Using mouse MC3T3E1 osteoblastic cells in culture we evaluated the effects of 0.1mM strontium ranelate and/or 100 μg/ml AGEs-modified bovine serum albumin (AGEs-BSA) on cell proliferation, osteogenic differentiation and pro-inflammatory cytokine production. We found that AGEs-BSA alone decreased osteoblastic proliferation and differentiation (P<0.01) while increasing IL-1β and TNFα production (P<0.01). On its own, strontium ranelate induced opposite effects: an increase in osteoblast proliferation and differentiation (P<0.01) and a decrease in cytokine secretion (P<0.01). Additionally, strontium ranelate prevented the inhibitory and pro-inflammatory actions of AGEs-BSA on osteoblastic cells (P<0.01). These effects of strontium ranelate were blocked by co-incubation with either the MAPK inhibitor PD98059, or the calcium channel blocker nifedipine. We also evaluated by Western blotting the activation status of ERK (a MAPK) and b-catenin. Activation of both signaling pathways was decreased by AGEs treatment, and this inhibitory effect was prevented if AGEs were co-incubated with strontium ranelate (P<0.01). On its own, strontium ranelate increased both pERK and activated b-catenin levels. In conclusion, this study demonstrates that strontium ranelate can prevent the deleterious in vitro actions of AGEs on osteoblastic cells in culture by mechanisms that involve calcium channel, MAPK and b-catenin activation.


Macromolecular Bioscience | 2017

Fumarate Copolymer–Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering

María Laura Lastra; María Silvina Molinuevo; Ana María Cortizo; María Susana Cortizo

Natural and synthetic cross-linked polymers allow the improvement of cytocompatibility and mechanical properties of the individual polymers. In osteochondral lesions of big size it will be required the use of scaffolds to repair the lesion. In this work a borax cross-linked scaffold based on fumarate-vinyl acetate copolymer and chitosan directed to osteochondrondral tissue engineering is developed. The cross-linked scaffolds and physical blends of the polymers are analyzed in based on their morphology, glass transition temperature, and mechanical properties. In addition, the stability, degradation behavior, and the swelling kinetics are studied. The results demonstrate that the borax cross-linked scaffold exhibits hydrogel behavior with appropriated mechanical properties for bone and cartilage tissue regeneration. Bone marrow progenitor cells and primary chondrocytes are used to demonstrate its osteo- and chondrogenic properties, respectively, assessing the osteo- and chondroblastic growth and maturation, without evident signs of cytotoxicity as it is evaluated in an in vitro system.


Journal of diabetes & metabolism | 2013

AGEs and Bone Ageing in Diabetes Mellitus

Antonio Desmond McCarthy; María Silvina Molinuevo; Ana María Cortizo

Type 1 and type 2 Diabetes mellitus are associated with a decrease in bone quality that leads to an increase in low-stress fractures, a condition called diabetic osteopathy. A growing body of evidence strongly indicates that one of the main pathological mechanisms of diabetic osteopathy is an excess accumulation of advanced glycation end products (AGEs) on collagen of bone extracellular matrix. This accumulation increases exponentially during ageing, and is further increased in conditions of substrate carbonyl stress such as chronically uncompensated Diabetes mellitus. AGEs can form covalent crosslinks throughout collagen fibrils, progressively increasing bone fragility and decreasing bone post-yield strain and energy, fracture resistance and toughness. In addition, bone marrow mesenchymal cells, osteoblasts and osteoclasts express receptors such as RAGE that can bind AGEs with high affinity, altering normal cellular homeostasis. Binding of AGEs by RAGE diminishes the osteogenic potential of mesenchymal cells, inhibits osteoblastic bone-forming capacity and induces a long-term decrease in osteoclastic recruitment and bone-resorbing activity. Altogether, these cellular effects of AGEs depress bone turnover, and thus induce an even greater accumulation of AGEs. Recent in vivo, ex vivo and in vitro evidence indicates that anti-diabetic and anti-osteoporotic treatment may prevent the deleterious effects of AGEs on bone cells, providing alternative options for the pharmacological treatment of diabetic osteopathy.

Collaboration


Dive into the María Silvina Molinuevo's collaboration.

Top Co-Authors

Avatar

Ana María Cortizo

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Antonio Desmond McCarthy

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Juan Manuel Fernández

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Claudia Sedlinsky

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

León Schurman

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Adriana Elena Scoccia

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Susana B. Etcheverry

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

María Laura Lastra

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

María Susana Cortizo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Agustina Berenice Lino

National University of La Plata

View shared research outputs
Researchain Logo
Decentralizing Knowledge