Maria Strantza
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Strantza.
Sensors | 2015
Maria Strantza; Dimitrios G. Aggelis; Dieter De Baere; Patrick Guillaume; Danny Van Hemelrijck
During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.
Structural Health Monitoring-an International Journal | 2015
Maria Strantza; Dieter De Baere; Marleen Rombouts; Gert Maes; Patrick Guillaume; Danny Van Hemelrijck
Numerous structural health monitoring systems have been investigated extensively in order to enhance safety level and reduce direct operational costs. This work demonstrates the feasibility study of a new concept, the effective structural health monitoring system. The effective structural health monitoring system detects cracks using a system of capillaries incorporated into a structure. The structure with the integrated capillaries is produced by additive manufacturing, a process of adding material layer by layer. The first objective of this study is to prove that the developed system has reached technological readiness level 3. In order to prove that, four-point bending specimens with the integrated effective structural health monitoring system were tested after being produced by additive manufacturing, more specifically by laser metal deposition. The second objective of the study is to indicate that during four-point bending fatigue tests, the integrated structural health monitoring system has no influence on the crack initiation behavior. To do so, the specimens were subjected to the so-called step method. We demonstrate that the effective structural health monitoring has reached technological readiness level 3 and that the presence of effective structural health monitoring did not negatively influence the fatigue initiation process. As higher technology readiness levels are required, further investigations are still in progress.
Sensors | 2015
Dimitrios G. Aggelis; Maria Strantza; Olivia Louis; F. Boulpaep; Demosthenes Polyzos; Danny Van Hemelrijck
The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.
Materials | 2016
Maria Strantza; Reza Vafadari; Dieter De Baere; Bey Vrancken; Wim Van Paepegem; Isabelle Vandendael; H. Terryn; Patrick Guillaume; Danny Van Hemelrijck
Selective laser melting (SLM) is an additive manufacturing (AM) process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM) system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM) system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.
Sensors | 2014
Maria Strantza; Olivia Louis; Demosthenes Polyzos; F. Boulpaep; Danny Van Hemelrijck; Dimitrios G. Aggelis
Cortical bone is a highly heterogeneous material at the microscale and has one of the most complex structures among materials. Application of elastic wave techniques to this material is thus very challenging. In such media the initial excitation energy goes into the formation of elastic waves of different modes. Due to “dispersion”, these modes tend to separate according to the velocities of the frequency components. This work demonstrates elastic wave measurements on human femur specimens. The aim of the study is to measure parameters like wave velocity, dispersion and attenuation by using broadband acoustic emission sensors. First, four sensors were placed at small intervals on the surface of the bone to record the response after pencil lead break excitations. Next, the results were compared to measurements on a bulk steel block which does not exhibit heterogeneity at the same wave lengths. It can be concluded that the microstructure of the tissue imposes a dispersive behavior for frequencies below 1 MHz and care should be taken for interpretation of the signals. Of particular interest are waveform parameters like the duration, rise time and average frequency, since in the next stage of research the bone specimens will be fractured with concurrent monitoring of acoustic emission.
Sensors | 2017
Michaël Hinderdael; Zoé Jardon; Margot Lison; Dieter De Baere; Wim Devesse; Maria Strantza; Patrick Guillaume
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).
Structural Health Monitoring-an International Journal | 2015
Maria Strantza; Reza Vafadari; Dieter De Baere; Marleen Rombouts; Isabelle Vandendael; H. Terryn; Michaël Hinderdael; Ali Rezaei; Wim Van Paepegem; Patrick Guillaume; Danny Van Hemelrijck
Over the last years the structural health monitoring (SHM) systems investigations have been focused on providing structures with similar functionality as the biological nervous system. There are numerous studies that have investigated this. In those studies a large number of sensors collects an extensive amount of data. In this study we demonstrate a novel effective SHM (eSHM) system which can monitor a structure with one single pressure sensor. The eSHM system can detect cracks by means of a system of capillaries integrated in a structure. This structure with the integrated capillaries can be produced by 3D printing, also known as additive manufacturing (AM). The principle of the eSHM system is monitoring the pressure variations in a network of capillaries. The effectiveness of this system is linked with the greatest strength of AM, which is the capability to create complex geometrical structures. Before the implementation in real structures, it is of crucial importance to be sure that the capillaries do not negatively influence the fatigue behaviour of the structures and the crack initiation. For this, the main objective of this study is to investigate different locations for a straight capillary incorporated into a four-point bending test specimen. The investigated titanium specimens with the integrated eSHM system are produced by AM. The capillary is located in the longitudinal dimension of the test specimen on the tension area of a four-point bending setup. We evaluate three different distances of the capillary to the outer surface of the test specimens. Furthermore, the results are also obtained by finite element simulations. We can conclude that –for the considered structure– the presence of the capillary does not influence the fatigue life negatively. On the other hand, cracks nucleate in the capillary region. Our future work will focus on the improvement of the capillary’s robustness. Other parameters like roughness effect and residual stresses should be also taken into account. doi: 10.12783/SHM2015/22
BioMed Research International | 2015
Olivia Louis; Yves Fierens; Maria Strantza; Robert Luypaert; Johan De Mey; Erik Cattrysse
Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r 2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r 2 = 0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction.
Materials | 2017
Michaël Hinderdael; Maria Strantza; Dieter De Baere; Wim Devesse; Iris De Graeve; H. Terryn; Patrick Guillaume
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures | 2016
Dimitrios G. Aggelis; Johan Blom; Sven S. De Sutter; Svetlana Verbruggen; Maria Strantza; Tine Tysmans; A.C. Mpalaskas; Phuoc Luong Nguyen
The present paper describes a collection of fracture monitoring cases in different materials. The cases examined include bending of textile reinforced cement (TRC), hybrid concrete-TRC lightweight beams, granite, additive manufacturing metal components, combined loading of human femur bone and pull-out in reinforced concrete. In all cases the basic role is played by acoustic emission (AE). It is shown that certain waveform parameters exhibit strong sensitivity to the rate of fracture as well as the dominant fracture mode. Parameters like frequency content and the duration of the signals supply real time trends that in the present cases are verified by optical techniques. It is concluded that AE supplies important information and allows the prediction of how the material will behave based on the initial AE recordings and before serious damage is inflicted. AE shows a very broad application range; however, the contribution of combination with other techniques is highlighted in order to increase the reliability of the interpretation of AE results.