Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Talavera is active.

Publication


Featured researches published by María Talavera.


Annals of Botany | 2009

Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations.

Francisco Balao; Ramón Casimiro-Soriguer; María Talavera; Javier Herrera; Salvador Talavera

BACKGROUND AND AIMS Studying the spatial distribution of cytotypes and genome size in plants can provide valuable information about the evolution of polyploid complexes. Here, the spatial distribution of cytological races and the amount of DNA in Dianthus broteri, an Iberian carnation with several ploidy levels, is investigated. METHODS Sample chromosome counts and flow cytometry (using propidium iodide) were used to determine overall genome size (2C value) and ploidy level in 244 individuals of 25 populations. Both fresh and dried samples were investigated. Differences in 2C and 1Cx values among ploidy levels within biogeographical provinces were tested using ANOVA. Geographical correlations of genome size were also explored. KEY RESULTS Extensive variation in chromosomes numbers (2n = 2x = 30, 2n = 4x = 60, 2n = 6x = 90 and 2n = 12x =180) was detected, and the dodecaploid cytotype is reported for the first time in this genus. As regards cytotype distribution, six populations were diploid, 11 were tetraploid, three were hexaploid and five were dodecaploid. Except for one diploid population containing some triploid plants (2n = 45), the remaining populations showed a single cytotype. Diploids appeared in two disjunct areas (south-east and south-west), and so did tetraploids (although with a considerably wider geographic range). Dehydrated leaf samples provided reliable measurements of DNA content. Genome size varied significantly among some cytotypes, and also extensively within diploid (up to 1.17-fold) and tetraploid (1.22-fold) populations. Nevertheless, variations were not straightforwardly congruent with ecology and geographical distribution. CONCLUSIONS Dianthus broteri shows the highest diversity of cytotypes known to date in the genus Dianthus. Moreover, some cytotypes present remarkable internal genome size variation. The evolution of the complex is discussed in terms of autopolyploidy, with primary and secondary contact zones.


Journal of Ecology | 2013

Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel

Montserrat Arista; María Talavera; Regina Berjano; Pedro L. Ortiz

Summary1. Flower colour polymorphism is traditionally attributed to pollinator selection although otherfactors, such as indirect selection on correlated traits, can play an important role.2. Lysimachia arvensis is a widespread annual species with two colour morphs differing in anthocy-anin composition. We explored the hypothesis that colour polymorphism is maintained by selectionrelated to environmental heterogeneity. Morph frequencies and environmental traits were recorded in51 populations along a wide geographical range. To explore the existence of morph-by-environmentinteractions, we conducted an experimental study comparing the two morphs under treatments differ-ing in water and light availability.3. A geographical pattern was found with a negative association between blue frequencies and lati-tude. The proportion of the blue morph increased with temperature and sunshine hours, butdecreased with precipitation. Flowering onset and flower size differed between morphs and scarcelyvaried across treatments. In contrast, several fitness components such as germination, seedlingsurvival, seedling mass and flower production showed important morph-by-environment interactions.The blue morph showed higher overall male and female fitness in all the treatment combinationsexcepting in sun-wet conditions where the red morph had higher fitness.4. Synthesis. Our results indicate that the mechanism of selection on flower colour seems to berelated to differences in fitness of both morphs due to abiotic factors. These differences couldexplain the geographical distribution of flower colour morphs and the maintenance of the colourpolymorphism. The marked difference in flowering time between morphs leaves open the potentialfor assortative mating and speciation in Lysimachia arvensis.Key-words: Anagallis, anthocyanins, clinal variation, flower phenology, morph-by-environmentinteraction, pleiotropy, reproductive ecology, selectionIntroduction


Molecular Ecology | 2009

Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae)

Karin Tremetsberger; Estrella Urtubey; Anass Terrab; Carlos M. Baeza; María Ángeles Ortiz; María Talavera; Christiane König; Eva M. Temsch; Gudrun Kohl; Salvador Talavera; Tod F. Stuessy

We report the phylogeographic pattern of the Patagonian and Subantarctic plant Hypochaeris incana endemic to southeastern South America. We applied amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) analysis to 28 and 32 populations, respectively, throughout its distributional range and assessed ploidy levels using flow cytometry. While cpDNA data suggest repeated or simultaneous parallel colonization of Patagonia and Tierra del Fuego by several haplotypes and/or hybridization, AFLPs reveal three clusters corresponding to geographic regions. The central and northern Patagonian clusters (∼38–51° S), which are closer to the outgroup, contain mainly tetraploid, isolated and highly differentiated populations with low genetic diversity. To the contrary, the southern Patagonian and Fuegian cluster (∼51–55° S) contains mainly diploid populations with high genetic diversity and connected by high levels of gene flow. The data suggest that H. incana originated at the diploid level in central or northern Patagonia, from where it migrated south. All three areas, northern, central and southern, have similar levels of rare and private AFLP bands, suggesting that all three served as refugia for H. incana during glacial times. In southern Patagonia and Tierra del Fuego, the species seems to have expanded its populational system in postglacial times, when the climate became warmer and more humid. In central and northern Patagonia, the populations seem to have become restricted to favourable sites with increasing temperature and decreasing moisture and there was a parallel replacement of diploids by tetraploids in local populations.


Molecular Phylogenetics and Evolution | 2010

Phylogeny and genetic structure of Erophaca (Leguminosae), a East-West Mediterranean disjunct genus from the Tertiary.

Ramón Casimiro-Soriguer; María Talavera; Francisco Balao; Anass Terrab; Javier Herrera; Salvador Talavera

The genus Erophaca comprises a single herbaceous perennial species with two subspecies distributed at opposite ends of the Mediterranean region. We used nrDNA ITS to investigate the phylogeny of the genus, and AFLP markers (9 primers, 20 populations) to establish the genetic relationship between subspecies, and among populations at each side of the Gibraltar Strait. According to nrDNA ITS, Erophaca is monophyletic, old (Miocene), and sister to the Astragalean clade. Life form attributes and molecular clock estimates suggest that Erophaca is one of the many Tertiary relicts that form part of the present Mediterranean flora. Within the occidental subspecies, European plants are clearly derived from North-African populations (Morocco) which, despite being rare on a regional scale, present the highest genetic diversity (as estimated by private and rare fragment numbers). In general, genetic diversity decreased with increasing distance from Morocco. AFLP and nrDNA ITS markers evidenced that the Eastern and the Western subspecies are genetically distinct. Possible causes for their disjunct distribution are discussed.


American Journal of Botany | 2009

The role of resources and architecture in modeling floral variability for the monoecious amphicarpic Emex spinosa (Polygonaceae)

Pedro L. Ortiz; Regina Berjano; María Talavera; Montserrat Arista

Determining the sources of floral variation is crucial to the understanding of floral evolution. Architectural effects and phenotypic plasticity in development can play an important role in intraplant floral variation, giving rise to gender dimorphism or sexual specialization. Amphicarpic plants have another source of floral variation that could also be influenced by positional effects. We studied the effects of resource availability and architecture in intraplant floral variability in two ecotypes of the amphicarpic Emex spinosa. Male flowers were smaller than females, irrespective of position or resource availability. Emex spinosa shows gender dimorphism not influenced by positional effects. Flower size differences among positions were mainly due to architecture, because the effects of resources on flower size were minimal. Architectural effects caused a decrease in female flower size from ground to apical positions but an increase in most male traits that resulted in sexual specialization at the end of flowering. In general, the ecotypes were similarly affected by resources or architecture. Differences between subterranean and aerial female flowers seem also to be a consequence of architecture. Our results contribute to the evidence that resource limitation is an overestimated effect and that architectural effects must be considered in studies of floral or fruit variation.


Annals of Botany | 2013

Phylogeography and seed dispersal in islands: the case of Rumex bucephalophorus subsp. canariensis (Polygonaceae).

María Talavera; Laura Navarro-Sampedro; Pedro L. Ortiz; Montserrat Arista

BACKGROUND AND AIMS Rumex bucephalophorus subsp. canariensis is an endemic taxon to Macaronesia with diaspore polymorphism. The origin and colonizing route of this taxon in Macaronesia was studied using molecular data and information on diaspore types. METHODS Amplified fragment length polymorphism (AFLP) was used in 260 plants from 22 populations of R. bucephalophorus subsp. canariensis, four from the Madeiran archipelago and 18 from the Canary archipelago. Diaspore production was analysed in 9-50 plants from each population used for AFLP analysis. One hundred and one plants from the Madeiran archipelago and 375 plants from the Canary Islands were studied. For each plant the type of diaspore produced was recorded. KEY RESULTS Overall populations had low genetic diversity but they showed a geographical pattern of genetic diversity that was higher in the older eastern islands than in the younger western ones. Two types of dispersible diaspores were found: in the eastern Canary islands (Lanzarote, Fuerteventura and Gran Canaria), plants produced exclusively long-dispersible diaspores, whereas in the western Canary islands (Tenerife, La Gomera, El Hierro) and the Madeiran archipelago plants produced exclusively short-dispersible diaspores. Genetically, the studied populations fell into four main island groups: Lanzarote-Fuerteventura, Gran Canaria, Tenerife-El Hierro and La Gomera-Madeira archipelago. CONCLUSIONS A Moroccan origin of R. bucephalophorus subsp. canariensis is hypothesized with a colonization route from the eastern to the western islands. In addition, at least one gene flow event from La Gomera to the Madeiran archipelago has taken place. During the colonization process the type of dispersible diaspore changed so that dispersability decreased in populations of the westernmost islands.


Journal of Evolutionary Biology | 2014

Positive effect of the yellow morph on female reproductive success in the flower colour polymorphic Iris lutescens (Iridaceae), a deceptive species

E. Imbert; H. Wang; L. Conchou; Hugo Christian Vincent; María Talavera; Bertrand Schatz

The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow‐ and purple‐flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I. lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency‐dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I. lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.


Molecular Phylogenetics and Evolution | 2009

AFLP and breeding system studies indicate vicariance origin for scattered populations and enigmatic low fecundity in the Moroccan endemic Hypochaeris angustifolia (Asteraceae), sister taxon to all of the South American Hypochaeris species.

Anass Terrab; María Ángeles Ortiz; María Talavera; María Jesús Ariza; María del Carmen Moriana; Juan L. García-Castaño; Karin Tremetsberger; Tod F. Stuessy; C. Marcelo Baeza; Estrella Urtubey; Claudete de Fátima Ruas; Ramón Casimiro-Soriguer; Francisco Balao; Peter E. Gibbs; Salvador Talavera

We used Amplified Fragment Length Polymorphism markers (AFLP) and breeding system studies to investigate the population structure and reproductive biology of Hypochaeris angustifolia (Asteraceae: Cichorieae). This species is endemic to altiplanos of the Atlas Mountains (Morocco) where it occurs in scattered populations, and it is the sister species to c. 40 species of this genus in South America. PCoA, NJ, and Bayesian clustering, revealed that the populations are very isolated whilst AFLP parameters show that almost all populations have marked genetic divergence. We contend that these features are more in accord with a vicariance origin for the scattered populations of H. angustifolia, rather than establishment by long-distance dispersal. The breeding system studies revealed that H. angustifolia is a self-incompatible species, with low fecundity in natural and in experimental crosses, probably due to a low frequency of compatible phenotypes within and between the populations.


Molecular Phylogenetics and Evolution | 2011

Molecular phylogeny and systematics of the highly polymorphic Rumex bucephalophorus complex (Polygonaceae)

María Talavera; Francisco Balao; Ramón Casimiro-Soriguer; María Ángeles Ortiz; Anass Terrab; Montserrat Arista; Pedro L. Ortiz; Tod F. Stuessy; Salvador Talavera

Rumex bucephalophorus is a very polymorphic species that has been subjected to various taxonomic studies in which diverse infraspecific taxa have been recognised on the basis of diaspore traits. In this study we used molecular markers (ITS and AFLP) to explore this remarkable diversity, to test previous hypotheses of classification, and attempt to explain biogeographic patterns. Results show that R. bucephalophorus forms a monophyletic group in which diversification began around 4.2 Mya, at the end of Messinian Salinity Crisis. The two molecular markers clearly show a deep divergence separating subsp. bucephalophorus from all other subspecific taxa, among which subsp. canariensis also constitutes a separate and well distinguishable unit. In contrast, subspecies hispanicus and subsp. gallicus constitute a monophyletic group in which three subgroups can be recognised: subsp. hispanicus, subsp. gallicus var. gallicus and subsp. gallicus var. subaegeus. However, these three subgroups are not clearly distinguished genetically or morphologically, so that in formal classification it would be preferable to treat them at the varietal level.


Aob Plants | 2016

Phylogeography above the species level for perennial species in a composite genus

Karin Tremetsberger; María Ángeles Ortiz; Anass Terrab; Francisco Balao; Ramón Casimiro-Soriguer; María Talavera; Salvador Talavera

Phylogeography above the species level is a powerful tool for investigating patterns and processes at the boundary between divergent and reticulate relationships. We examined the evolutionary history of perennial species in the western Mediterranean composite genus Helminthotheca using DNA sequence and fingerprint data. The origin of the group was in western North Africa, a region of intensive Pleistocene speciation. From here it expanded to the Iberian Peninsula and Sicily. The inferred evolutionary history is compatible with the concept of ecogeographic isolation, which refers to the fact that geographic ranges of diverging lineages are largely non-overlapping due to adaptive differentiation.

Collaboration


Dive into the María Talavera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge