Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Teresa Rinaudo is active.

Publication


Featured researches published by Maria Teresa Rinaudo.


Brain Pathology | 2010

TDP-43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis

Maria Teresa Giordana; Marco Piccinini; Silvia Grifoni; Giovanni De Marco; Marco Vercellino; Michela Magistrello; Alessia Pellerino; Barbara Buccinnà; Elisa Lupino; Maria Teresa Rinaudo

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder consisting of progressive loss of motor neurons. TDP‐43 has been identified as a component of ubiquitin‐immunoreactive inclusions of motor neurons in ALS. We focused on the diffuse cytoplasmic TDP‐43 immunoreactivity in ALS neurons, and quantitatively assessed it in comparison with skein/round TDP‐43 and ubiquitin immunostaining in motor neurons of 30 sporadic ALS cases. The percentage of spinal motor neurons with cytoplasmic TDP‐43 immunoreactivity was higher than that of ubiquitin‐immunoreactive ones. The percentage of TDP‐43‐positive motor neurons was independent of neuron counts in anterior horns, while the percentage of ubiquitinated neurons was inversely correlated. Aiming to define the cytosolic localization of TDP‐43, the immunoblot analysis of spinal cord and frontal cortex showed that full‐length TDP‐43, the 45 kDa form and ubiquitinated TDP‐43 are found in the soluble inclusion‐free fraction. The present data suggest that delocalization, accumulation and ubiquitination of TDP‐43 in the cytoplasm of motor neurons are early dysfunctions in the cascade of the events leading to motor neuron degeneration in ALS, preceding the formation of insoluble inclusion bodies. Being cytoplasmic accumulation an ongoing event during the course of the illness, a therapeutic approach to this incurable disease can be envisaged.


AIDS | 2002

The human 26S proteasome is a target of antiretroviral agents.

Marco Piccinini; Maria Teresa Rinaudo; Nadia Chiapello; Emanuela Ricotti; Simone Baldovino; Michael Mostert; Pier-Angelo Tovo

Background Proteasomes constitute the degradative machinery of the ubiquitin/adenosine triphosphate-dependent proteolytic pathway, which is involved in many cell functions, including immune response and apoptosis, and in HIV maturation and infectivity. Objective To examine whether proteasomes are targeted by antiretroviral agents. Methods Chymotrypsin-like, trypsin-like and peptidyl–glutamyl–peptide hydrolysing activities of purified human 26S and 20S proteasomes, the latter depleted or enriched in 11S regulator, were assayed after incubation with indinavir, lamivudine and zidovudine at 1–80 μM alone and in combination. To assess the drug effects on cellular functions regulated by proteasomes, the accumulation of ubiquitin-tagged proteins, the processing of the nuclear factor kappa B precursor p105, and the degradation of the inhibitor of nuclear factor kappa B, isoform alpha (IκBα) were evaluated by Western immunoblotting in Jurkat cells after incubation for 6 h with the drugs above. Results Trypsin-like and mostly chymotrypsin-like activities of purified 26S proteasome were inhibited by each drug from 10 to 80 μM, more by double combinations and mostly by the triple combination. The peptidyl–glutamyl–peptide hydrolysing activity of the 26S proteasome and the three peptidase activities of the 20S proteasome, depleted or enriched in 11S regulator, were unaffected. The accumulation of ubiquitin-tagged proteins, reduced IκBα degradation and p105 processing were appreciable in intact cells with the triple drug combination. Conclusion The human 26S proteasome is a target of antiretroviral agents. This suggests that the antiviral action and some clinical and immunological benefits of combined antiretroviral therapy rely not only on its known effects on viral enzymes, but also on host cell components.


Molecular Neurobiology | 2010

Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders

Marco Piccinini; Federica Scandroglio; Simona Prioni; Barbara Buccinnà; Nicoletta Loberto; Massimo Aureli; Vanna Chigorno; Elisa Lupino; Giovanni DeMarco; Annarosa Lomartire; Maria Teresa Rinaudo; Sandro Sonnino; Alessandro Prinetti

Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron–glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid–protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid β peptide in Alzheimer’s disease, huntingtin in Huntington’s disease, α-synuclein in Parkinson’s disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.


Circulation Research | 2005

Type I Collagen Limits VEGFR-2 Signaling by a SHP2 Protein-Tyrosine Phosphatase–Dependent Mechanism 1

Stefania Mitola; Barbara Brenchio; Marco Piccinini; Leon G.J. Tertoolen; Luca Zammataro; Georg Breier; Maria Teresa Rinaudo; Jeroen den Hertog; Marco Arese; Federico Bussolino

During angiogenesis, a combined action between newly secreted extracellular matrix proteins and the repertoire of integrins expressed by endothelial cells contributes in the regulation of their biological functions. Extracellular matrix-engaged integrins influence tyrosine kinase receptors, thus promoting a regulatory cross-talk between adhesive and soluble stimuli. For instance, vitronectin has been reported to positively regulate VEGFR-2. Here, we show that collagen I downregulates VEGF-A–mediated VEGFR-2 activation. This activity requires the tyrosine phosphatase SHP2, which is recruited to the activated VEGFR-2 when cells are plated on collagen I, but not on vitronectin. Constitutive expression of SHP2C459S mutant inhibits the negative role of collagen I on VEGFR-2 phosphorylation. VEGFR-2 undergoes internalisation, which is associated with dynamin II phosphorylation. Expression of SHP2C459S impairs receptor internalisation suggesting that SHP2-dependent dephosphorylation regulates this process. These findings demonstrate that collagen I in provisional extracellular matrix surrounding nascent capillaries triggers a signaling pathway that negatively regulates angiogenesis.


Acta Neuropathologica | 2011

Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations

Giovanni De Marco; Elisa Lupino; Andrea Calvo; Cristina Moglia; Barbara Buccinnà; Silvia Grifoni; Cristina Ramondetti; Annarosa Lomartire; Maria Teresa Rinaudo; Marco Piccinini; Maria Teresa Giordana; Adriano Chiò

TDP-43, encoded by TARDBP, is a ubiquitously expressed, primarily nuclear protein. In recent years, TDP-43 has been identified as the major pathological protein in ALS due to its mislocalisation in the cytoplasm of motor neurons of patients with and without TARDBP mutations and expression in forms that do not match its predicted molecular weight. In this study, the TDP-43 profile was investigated using western immunoblot analysis in whole lysates, nuclei and cytoplasm of circulating lymphomonocytes from 16 ALS patients, 4 with (ALS/TDP+) and 12 without (ALS/TDP−) TARDBP mutations in the protein C-terminal domain, and thirteen age-matched, healthy donors (controls). Three disease-unaffected first-degree relatives of an ALS/TDP+ patient were also included: one carried the parent mutation (Rel/TDP+) whereas the other two did not (Rel/TDP−). In all ALS patients, relatives and controls, TDP-43 retained the predicted molecular weight in whole cell lysates and nuclei, but in the cytoplasm its molecular weight was slightly smaller than expected. In quantitative terms, TDP-43 was expressed at approximately the same levels in whole cell lysates of ALS patients, relatives and controls. In contrast, TDP-43 accumulated in the cytoplasm with concomitant nuclear depletion in all ALS/TDP+ patients, in about 50% of ALS/TDP− patients and in the Rel/TDP+ subject compared to the controls. In the remaining ALS/TDP− patients and in the two Rel/TDP− subjects, TDP-43 matched the control levels in both subcellular compartments. Were these findings further confirmed, circulating lymphomonocytes could be informative of TDP-43 mislocalisation in nervous tissue and used as a biomarker for future disease risk.


Journal of Neuroimmunology | 2003

Interferon-γ-inducible subunits are incorporated in human brain 20S proteasome

Marco Piccinini; Michael Mostert; Sabrina Croce; Simone Baldovino; Mauro Papotti; Maria Teresa Rinaudo

Abstract In most tissues expressing MHC class I molecules, proteasomes incorporating IFN-γ-inducible subunits, defined immuno-proteasomes, exist together with constitutive proteasomes. In physiological conditions, the central nervous system expresses neither MHC class I molecules nor TAP1 and TAP2 transporters but besides being constitutive, it is unknown whether immuno-proteasomes are also present in this tissue. We present evidence that in human brain, the two types of proteasome exist suggesting that under physiological conditions, the mechanisms regulating expression of IFN-γ-inducible subunits as well as of MHC class I molecules and TAP1 and TAP2 transporters in nervous tissue, are not entirely coordinated.


Biochemical Journal | 2001

Proteasomes are a target of the anti-tumour drug vinblastine

Marco Piccinini; Ornella Tazartes; Caterina Mezzatesta; Emanuela Ricotti; Stefano Bedino; Franca Grosso; Umberto Dianzani; Pier-Angelo Tovo; Michael Mostert; Alberto Musso; Maria Teresa Rinaudo

Proteasomes, the proteolytic machinery of the ubiquitin/ATP-dependent pathway, have a relevant role in many processes crucial for cell physiology and cell cycle progression. Proteasome inhibitors are used to block cell cycle progression and to induce apoptosis in certain cell lines. Here we examine whether proteasomal function is affected by the anti-tumour drug vinblastine, whose cytostatic action relies mainly on the disruption of mitotic spindle dynamics. The effects of vinblastine on the peptidase activities of human 20 S and 26 S proteasomes and on the proteolytic activity of 26 S proteasome were assessed in the presence of specific fluorogenic peptides and (125)I-lysozyme-ubiquitin conjugates respectively. The assays of ubiquitin-protein conjugates and of inhibitory kappa B alpha (I kappa B alpha), which are characteristic intracellular proteasome substrates, by Western blotting on lysates from HL60 cells incubated with or without vinblastine, illustrated the effects of vinblastine on proteasomes in vivo. We also evaluated the effects of vinblastine on the signal-induced degradation of I kappa B alpha. Vinblastine at 3--110 microM reversibly inhibited the chymotrypsin-like activity of the 20 S proteasome and the trypsin-like and peptidyl-glutamyl-peptide hydrolysing activities of both proteasomes, but only at 110 microM vinblastine was the chymotrypsin-like activity of the 26 S proteasome inhibited; furthermore, at 25--200 microM the drug inhibited the degradation of ubiquitinated lysozyme. In HL60 cells exposed for 6 h to 0.5--10 microM vinblastine, the drug-dose-related accumulation of polyubiquitinated proteins, as well as that of a high-molecular-mass form of I kappa B alpha, occurred. Moreover, vinblastine impaired the signal-induced degradation of I kappa B alpha. Cell viability throughout the test was approx. 95%. Proteasomes can be considered to be a new and additional vinblastine target.


Molecular Brain Research | 2000

Structural and functional characterization of 20S and 26S proteasomes from bovine brain.

Marco Piccinini; Ornella Tazartes; Michael Mostert; Alberto Musso; Mario DeMarchi; Maria Teresa Rinaudo

Two proteins were isolated, in a stable form, from bovine brain by ion exchange chromatography, gel filtration and ultracentrifugation on glycerol gradient. They were identified as 20S and 26S proteasomes on the basis of molecular mass, migration velocity on non-denaturing gels, immunoreactivity, multipeptidase activity and the 26S proteasome also for dependence on ATP for the degradation of short peptides and ubiquitinylated proteins. However, the 26S proteasome has some properties not yet described for its counterpart of other tissues and from brain of this and other species. In particular, the ATP concentration required by the 26S proteasome to reach maximal peptidase activity was approximately 40-fold lower than the one required for maximal proteolytic activity on polyubiquitinylated substrates. Moreover, plots of substrate concentration vs. velocity gave a saturation curve for the 26S proteasome only, which, for the trypsin-like and post-glutamyl peptide hydrolase activities fitted the Michaelis-Menten equation, whereas for the chymotrypsin-like activity indicated multibinding site kinetics with positive cooperativity (n = 2.32+/-0.38). As concerns the 20S proteasome, its electrophoretic pattern on native gel revealed a single protein band, a feature, to our knowledge, not yet described for the brain particle of any species.


International Journal of Biochemistry | 1991

Acid soluble, short chain esterified and free carnitine in the liver, heart, muscle and brain of pre and post hatched chicks

Maria Teresa Rinaudo; M. Curto; R. Bruno; Marco Piccinini; C. Marino

1. The behaviour of total acid soluble, short chain esterified and free carnitine in the liver, heart, muscle and brain of chick embryos between 11th and 21st day of development and of 8 and 180-day-old chicks is described. 2. Total acid soluble carnitine fluctuates around the same levels in the brain, liver and muscle until 18th day of development, whereas it attains a peak on that day in the heart. At hatching compared to 18th day, it suddenly increases three times in the muscle, drops not significantly in the heart and brain, but sharply in the liver (-40%). However the levels are always higher than those of the grown chick in the brain but lower in the other tissues. 3. Free carnitine levels are almost constant in all tissues during the embryonic life; if compared to adult ones, they are very much lower in the liver, heart and muscle, but higher in the brain, even in 8 day-old chick. 4. Short chain esterified, carnitine reaches a maximum on 18th day of egg incubation in the liver, brain and heart; in the muscle it stays on constant levels until this day and then rapidly increases so that at hatching it doubles the values. 5. The short chain esterified to free carnitine percentage ratio peaks in all tissues on 18th day of development, attaining figures which are well above those determined in the grown chick.


International Journal of Biochemistry | 1987

Evidence of an insulin generated pyruvate dehydrogenase stimulating factor in rat brain plasma membranes

Maria Teresa Rinaudo; M. Curto; R. Bruno; C. Marino; V. Rossetti; Michael Mostert

1. The results of this study indicates that the binding of insulin to brain plasma membranes activates a membrane protease which, by a trypsin like mechanism, produces a soluble factor that modulates the PDH behaviour when added to brain mitochondria. 2. The supernatant from brain plasma membranes incubated with 0.5 mg/ml trypsin added to mitochondria increases PDH activity levels and cancels PDH inhibition by NaF, as has already been seen when the plasma membranes are incubated with 25 microU/ml insulin. No such effects are obtained when the incubation is run out with 0.5 mg/ml chymotrypsin. 3. The supernatants from insulin or trypsin treated plasma membranes retain their activating properties on mitochondrial PDH also after dansylation; from these preparations a dansylated active on PDH material was separated by monodimensional chromatography on HPTLC silica Gel plates, using chloroform/1-butanol (93:7 v/v) as a solvent. 4. Insulin incubation of plasma membranes pretreated with protease inhibitors (leupeptin, phenylmethylsulfonylfluoride) or with exogenous trypsin, but not chymotrypsin substrates (esters of arginine and tyrosine) yields an inactive supernatant on PDH. 5. Insulin treated plasma membrane supernatants lose all stimulating properties on PDH after incubation for 1 hr with 2 mg/ml trypsin or chymotrypsin.

Collaboration


Dive into the Maria Teresa Rinaudo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge