Maria Tereza Weitzel Dias Carneiro
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Maria Tereza Weitzel Dias Carneiro is active.
Publication
Featured researches published by Maria Tereza Weitzel Dias Carneiro.
Toxicology Letters | 2015
Bruno D. Bertuloso; Priscila L. Podratz; Eduardo Merlo; Julia F.P. de Araújo; Leandro Ceotto Freitas Lima; Emilio C. de Miguel; Letícia Nogueira da Gama de Souza; Agata L. Gava; Miriane de Oliveira; Leandro Miranda-Alves; Maria Tereza Weitzel Dias Carneiro; Célia Nogueira; Jones Bernardes Graceli
Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas.
Química Nova | 2002
Maria Tereza Weitzel Dias Carneiro; Carmem L. Porto da Silveira; Norbert Miekeley; Lúcia M. de Carvalho Fortes
Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of twenty minor and trace elements in hair samples from an urban population group (N = 1775), aiming at the establishment of reliable hair reference intervals. Statistical evaluation of the data with respect to age, sex and anatomic region was performed by multivariant analysis and according to recommendations of the International Federation of Clinical Chemistry (IFCC). The results show that mainly age and anatomic region (scalp or pubis) influence significantly the concentration of several elements. Comparison of the here calculated reference intervals with those previously published and used by clinical laboratories for this population showed larger discrepancies and the need for an urgent revision of these data.
Journal of Analytical Atomic Spectrometry | 2009
Fernanda Henrique Lyra; Maria Tereza Weitzel Dias Carneiro; Geisamanda Pedrini Brandão; Helen Moura Pessoa; Eustáquio V.R. Castro
A procedure for the direct determination of P in biodiesel samples by graphite furnace atomic absorption spectrometry (GF AAS) using an automatic solid sampling accessory without any sample pre-treatment or dilution is proposed. Studies showed that it is necessary to use a chemical modifier and a Pd in Triton X-100 solution showed the best results. The pyrolysis and atomization temperatures (1300 °C and 2700 °C, respectively), as well as the Pd mass (30 µg) were determined by multivariate optimization. The other parameters of the temperature programs were defined by univariate optimization. The limit of detection at the optimized conditions was 7.2 ng (1.2 µg g−1) using 20 µL of chemical modifier solution as blank for typical sample masses between of 2.00 and 6.00 mg. Aqueous calibration solutions were used and the calibration curves showed correlation coefficients better than R2 = 0.99. The characteristic mass was 9.1 ng. The method’s accuracy was confirmed both by the analysis of reference materials and by comparison with an independent procedure (EN 14107). No statistically significant difference was observed between obtained and expected values.
Toxicology and Applied Pharmacology | 2017
Gabriela C. Sena; Leandro C. Freitas-Lima; Eduardo Merlo; Priscila L. Podratz; Julia F.P. de Araújo; Poliane A.A. Brandão; Maria Tereza Weitzel Dias Carneiro; Marina Campos Zicker; Adaliene Versiani Matos Ferreira; Christina Maeda Takiya; Carolina M.L. Barbosa; Marcelo M. Morales; Ana Paula Santos-Silva; Leandro Miranda-Alves; Ian Victor Silva; Jones Bernardes Graceli
ABSTRACT Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine‐disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus‐pituitary‐gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus‐pituitary‐gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co‐occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. HIGHLIGHTSTBT disrupted proper functioning of the HPG axis in female rats.TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats.TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats.TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function
Reproductive Toxicology | 2015
Priscila L. Podratz; Eduardo Merlo; Gabriela C. Sena; Mariana Morozesk; Marina Marques Bonomo; Silvia Tamie Matsumoto; Mercia B. Costa; Gabriela Carvalho Zamprogno; Poliane A.A. Brandão; Maria Tereza Weitzel Dias Carneiro; Emilio de Castro Miguel; Leandro Miranda-Alves; Ian Victor Silva; Jones Bernardes Graceli
Organotins (OTs) are environmental contaminants used as biocides in antifouling paints that have been shown to be endocrine disrupters. However, studies evaluating the effects of OTs accumulated in seafood (LNI) on reproductive health are particularly sparse. This study demonstrates that LNI leads to impairment in the reproductive tract of female rats, as the estrous cycle development, as well as for ovary and uterus morphology. Rats were treated with LNI, and their reproductive morphophysiology was assessed. Morphophysiological abnormalities, such as irregular estrous cycles, abnormal ovarian follicular development and ovarian collagen deposition, were observed in LNI rats. An increase in luminal epithelia and ERα expression was observed in the LNI uteri. Together, these data provide in vivo evidence that LNI are toxic for reproductive morphophysiology, which may be associated with risks to reproductive function.
Endocrinology | 2016
Eduardo Merlo; Priscila L. Podratz; Gabriela C. Sena; Julia F.P. de Araújo; Leandro Ceotto Freitas Lima; Izabela Sinara Silva Alves; Letícia Nogueira da Gama-de-Souza; Renan Pelição; Lívia Carla de Melo Rodrigues; Poliane A.A. Brandão; Maria Tereza Weitzel Dias Carneiro; Rita Gomes Wanderley Pires; Cristina Martins-Silva; Tamara A. Alarcon; Leandro Miranda-Alves; Ian Victor Silva; Jones Bernardes Graceli
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Toxicology Letters | 2016
João V.S. Coutinho; Leandro C. Freitas-Lima; Frederico F.C.T. Freitas; Flavia Ps Freitas; Priscila L. Podratz; Rafaella P.L. Magnago; Marcella L. Porto; Silvana S. Meyrelles; Elisardo C. Vasquez; Poliane A.A. Brandão; Maria Tereza Weitzel Dias Carneiro; Francisca Diana Paiva-Melo; Leandro Miranda-Alves; Ian Victor Silva; Agata L. Gava; Jones Bernardes Graceli
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis.
Toxicology Letters | 2016
Emilly M. Rossi; Vinicius Bermond Marques; Dieli Oliveira Nunes; Maria Tereza Weitzel Dias Carneiro; Priscila L. Podratz; Eduardo Merlo; Leonardo dos Santos; Jones Bernardes Graceli
Iron plays a critical role in a mammals physiological processes. However, iron tissue deposits have been shown to act as endocrine disrupters. Studies that evaluate the effect of acute iron overload on hypothalamic-pituitary-gonadal (HPG) axis health are particularly sparse. This study demonstrates that acute iron overload leads to HPG axis abnormalities, including iron accumulation and impairment in reproductive tract morphology. Female rats were treated with iron-dextran (Fe rats) to assess their HPG morphophysiology. The increasing serum iron levels due to iron-dextran treatment were positively correlated with higher iron accumulation in the HPG axis and uterus of Fe rats than in control rats. An increase in the production of superoxide anions was observed in the pituitary, uterus and ovary of Fe rats. Morphophysiological reproductive tract abnormalities, such as abnormal ovarian follicular development and the reduction of serum estrogen levels, were observed in Fe rats. In addition, a significant negative correlation was obtained between ovary superoxide anion and serum estrogen levels. Together, these data provide in vivo evidence that acute iron overload is toxic for the HPG axis, a finding that may be associated with the subsequent development of the risk of reproductive dysfunction.
Journal of Analytical Atomic Spectrometry | 2012
Helen Moura Pessoa; Rachel Ann Hauser-Davis; Reinaldo Calixto de Campos; Eustáquio V.R. Castro; Maria Tereza Weitzel Dias Carneiro; Geisamanda Pedrini Brandão
The presence of Ca, Mg, Sr and Ba in crude oil samples should be controlled, since they can lead to incrustations on steel pipes, valves, pumps and other equipment used in crude oil drilling. This paper proposes procedures for the determination of these metals in crude oil by atomic absorption spectrometry, using the formation of O/W emulsions for sample preparation. Emulsions were prepared in 0.2% v/v HNO3 using Triton X-100 as a surfactant and showed good stability for the four studied analytes of at least 5 days after preparation. Flame atomic absorption spectrometry (FAAS) was used for the determination of Ca, Mg and Sr and graphite furnace atomic absorption spectrometry (GFAAS) was used for the determination of Ba. External calibration could be performed for the determination of Ca, Mg and Sr with inorganic standard solutions in the form of emulsions; for Ba, calibration was possible in aqueous medium. The limits of detection obtained were 0.54, 0.09, 0.10 and 0.04 μg g−1 for Ca, Mg, Sr and Ba respectively in the crude oil samples. Recoveries ranging from 96 to 104% and the good agreement among the found and certified values in the analysis of a certified reference material (NIST 1085b) warranted the accuracy of the procedures.
Química Nova | 2015
Murilo de Oliveira Souza; Karla P. Rainha; Eustáquio V.R. Castro; Maria Tereza Weitzel Dias Carneiro; Rafael de Queiroz Ferreira
The purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.