María Uriarte
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Uriarte.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Thomas Rudel; Laura Schneider; María Uriarte; Barry Turner; Ruth S. DeFries; Deborah Lawrence; Jacqueline Geoghegan; Susanna B. Hecht; Amy Ickowitz; Eric F. Lambin; Trevor Birkenholtz; Sandra Baptista; Ricardo Grau
Does the intensification of agriculture reduce cultivated areas and, in so doing, spare some lands by concentrating production on other lands? Such sparing is important for many reasons, among them the enhanced abilities of released lands to sequester carbon and provide other environmental services. Difficulties measuring the extent of spared land make it impossible to investigate fully the hypothesized causal chain from agricultural intensification to declines in cultivated areas and then to increases in spared land. We analyze the historical circumstances in which rising yields have been accompanied by declines in cultivated areas, thereby leading to land-sparing. We use national-level United Nations Food and Agricultural Organization data on trends in cropland from 1970–2005, with particular emphasis on the 1990–2005 period, for 10 major crop types. Cropland has increased more slowly than population during this period, but paired increases in yields and declines in cropland occurred infrequently, both globally and nationally. Agricultural intensification was not generally accompanied by decline or stasis in cropland area at a national scale during this time period, except in countries with grain imports and conservation set-aside programs. Future projections of cropland abandonment and ensuing environmental services cannot be assumed without explicit policy intervention.
Nature | 2016
Lourens Poorter; Frans Bongers; T. Mitchell Aide; Angélica M. Almeyda Zambrano; Patricia Balvanera; Justin M. Becknell; Vanessa K. Boukili; Pedro H. S. Brancalion; Eben N. Broadbent; Robin L. Chazdon; Dylan Craven; Jarcilene Silva de Almeida-Cortez; George A. L. Cabral; Ben H J De Jong; Julie S. Denslow; Daisy H. Dent; Saara J. DeWalt; Juan M. Dupuy; Sandra M. Durán; Mario M. Espírito-Santo; María C. Fandiño; Ricardo G. César; Jefferson S. Hall; José Luis Hernández‐Stefanoni; Catarina C. Jakovac; André Braga Junqueira; Deborah Kennard; Susan G. Letcher; Juan Carlos Licona; Madelon Lohbeck
Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−1), corresponding to a net carbon uptake of 3.05 Mg C ha−1 yr−1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Methods in Ecology and Evolution | 2014
Robert Muscarella; Peter J. Galante; Mariano Soley-Guardia; Robert A. Boria; Jamie M. Kass; María Uriarte; Robert P. Anderson
Summary Recent studies have demonstrated a need for increased rigour in building and evaluating ecological niche models (ENMs) based on presence-only occurrence data. Two major goals are to balance goodness-of-fit with model complexity (e.g. by ‘tuning’ model settings) and to evaluate models with spatially independent data. These issues are especially critical for data sets suffering from sampling bias, and for studies that require transferring models across space or time (e.g. responses to climate change or spread of invasive species). Efficient implementation of procedures to accomplish these goals, however, requires automation. We developed ENMeval, an R package that: (i) creates data sets for k-fold cross-validation using one of several methods for partitioning occurrence data (including options for spatially independent partitions), (ii) builds a series of candidate models using Maxent with a variety of user-defined settings and (iii) provides multiple evaluation metrics to aid in selecting optimal model settings. The six methods for partitioning data are n−1 jackknife, random k-folds ( = bins), user-specified folds and three methods of masked geographically structured folds. ENMeval quantifies six evaluation metrics: the area under the curve of the receiver-operating characteristic plot for test localities (AUCTEST), the difference between training and testing AUC (AUCDIFF), two different threshold-based omission rates for test localities and the Akaike information criterion corrected for small sample sizes (AICc). We demonstrate ENMeval by tuning model settings for eight tree species of the genus Coccoloba in Puerto Rico based on AICc. Evaluation metrics varied substantially across model settings, and models selected with AICc differed from default ones. In summary, ENMeval facilitates the production of better ENMs and should promote future methodological research on many outstanding issues.
Ecological Applications | 2006
Charles D. Canham; Michael J. Papaik; María Uriarte; William H. McWilliams; Jennifer C. Jenkins; Mark J. Twery
We use permanent-plot data from the USDA Forest Services Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.
Nature | 2016
Georges Kunstler; Daniel S. Falster; David A. Coomes; Francis K. C. Hui; Robert M. Kooyman; Daniel C. Laughlin; Lourens Poorter; Mark C. Vanderwel; Ghislain Vieilledent; S. Joseph Wright; Masahiro Aiba; Christopher Baraloto; John P. Caspersen; J. Hans C. Cornelissen; Sylvie Gourlet-Fleury; Marc Hanewinkel; Bruno Hérault; Jens Kattge; Hiroko Kurokawa; Yusuke Onoda; Josep Peñuelas; Hendrik Poorter; María Uriarte; Sarah J. Richardson; Paloma Ruiz-Benito; I-Fang Sun; Göran Ståhl; Nathan G. Swenson; Jill Thompson; Bertil Westerlund
Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.
Ecology Letters | 2010
María Uriarte; Nathan G. Swenson; Robin L. Chazdon; Liza S. Comita; W. John Kress; David L. Erickson; Jimena Forero-Montaña; Jess K. Zimmerman; Jill Thompson
Ecology Letters (2010) 13: 1503-1514 ABSTRACT: The phylogenetic structure and distribution of functional traits in a community can provide insights into community assembly processes. However, these insights are sensitive to the spatial scale of analysis. Here, we use spatially explicit, neighbourhood models of tree growth and survival for 19 tree species, a highly resolved molecular phylogeny and information on eight functional traits to quantify the relative efficacy of functional similarity and shared ancestry in describing the effects of spatial interactions between tree species on demographic rates. We also assess the congruence of these results with observed phylogenetic and functional structure in the neighbourhoods of live and dead trees. We found strong support for models in which the effects of spatial neighbourhood interactions on tree growth and survival were scaled to species-specific mean functional trait values (e.g., wood specific gravity, leaf succulence and maximum height) but not to phylogenetic distance. The weak phylogenetic signal in functional trait data allowed us to independently interpret the static neighbourhood functional and phylogenetic patterns. We observed greater functional trait similarity in the neighbourhoods of live trees relative to those of dead trees suggesting that environmental filtering is the major force structuring this tree community at this scale while competitive interactions play a lesser role.
Trends in Ecology and Evolution | 2015
W. John Kress; Carlos García-Robledo; María Uriarte; David L. Erickson
The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed.
Ecology | 2012
Nathan G. Swenson; David L. Erickson; Xiangcheng Mi; Norman A. Bourg; Jimena Forero-Montaña; Xue-Jun Ge; Robert W. Howe; Jeffrey K. Lake; Xiaojuan Liu; Keping Ma; Nancai Pei; Jill Thompson; María Uriarte; Amy Wolf; S. Joseph Wright; Wanhu Ye; Jinlong Zhang; Jess K. Zimmerman; W. John Kress
The study of biodiversity has tended to focus primarily on relatively information-poor measures of species diversity. Recently, many studies of local diversity (alpha diversity) have begun to use measures of functional and phylogenetic alpha diversity. Investigations into the phylogenetic and functional dissimilarity (beta diversity) of communities have been far less numerous, but these dissimilarity measures have the potential to infer the mechanisms underlying community assembly and dynamics. Here, we relate levels of phylogenetic and functional alpha diversity to levels of phylogenetic and functional beta diversity to infer the mechanism or mechanisms responsible for the assembly of tree communities in six forests located in tropical and temperate latitudes. The results show that abiotic filtering plays a role in structuring local assemblages and governing spatial turnover in community composition and that phylogenetic measures of alpha and beta diversity are not strong predictors of functional alpha and beta diversity in the forests studied.
PLOS ONE | 2010
W. John Kress; David L. Erickson; Nathan G. Swenson; Jill Thompson; María Uriarte; Jess K. Zimmerman
Background Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Methodology/Principal Findings Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. Conclusions/Significance As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.
PLOS ONE | 2014
Robert Muscarella; María Uriarte; David L. Erickson; Nathan G. Swenson; Jess K. Zimmerman; W. John Kress
Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.