Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria V. Babak is active.

Publication


Featured researches published by Maria V. Babak.


Drug Discovery Today | 2014

Development of anticancer agents: wizardry with osmium

Muhammad Hanif; Maria V. Babak; Christian G. Hartinger

Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.


Chemistry: A European Journal | 2015

Half-Sandwich Ruthenium(II) Biotin Conjugates as Biological Vectors to Cancer Cells

Maria V. Babak; Damian Plażuk; Samuel M. Meier; Homayon John Arabshahi; Jóhannes Reynisson; Błażej Rychlik; Andrzej Błauż; Katarzyna Szulc; Muhammad Hanif; Sebastian Strobl; Alexander Roller; Bernhard K. Keppler; Christian G. Hartinger

Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed.


Chemistry: A European Journal | 2013

Am(m)ines Make the Difference: Organoruthenium Am(m)ine Complexes and Their Chemistry in Anticancer Drug Development

Maria V. Babak; Samuel M. Meier; Anton A. Legin; Mahsa S. Adib Razavi; Alexander Roller; Michael A. Jakupec; Bernhard K. Keppler; Christian G. Hartinger

With the aim of systematically studying fundamental structure-activity relationships as a basis for the development of Ru(II) arene complexes (arene = p-cymene or biphenyl) bearing mono-, bi-, or tridentate am(m)ine ligands as anticancer agents, a series of ammine, ethylenediamine, and diethylenetriamine complexes were prepared by different synthetic routes. Especially the synthesis of mono-, di-, and triammine complexes was found to be highly dependent on the reaction conditions, such as stoichiometry, temperature, and time. Hydrolysis and protein-binding studies were performed to determine the reactivity of the compounds, and only those containing chlorido ligands undergo aquation or form protein adducts. These properties correlate well with in vitro tumor-inhibiting potency of the compounds. The complexes were found to be active in anticancer assays when meeting the following criteria: stability in aqueous solution and low rates of hydrolysis and binding to proteins. Therefore, the complexes least reactive to proteins were found to be the most cytotoxic in cancer cells. In general, complexes with biphenyl as arene ligand inhibited the growth of tumor cells more effectively than the cymene analogues, consistent with the increase in lipophilicity. This study highlights the importance of finding a proper balance between reactivity and stability in the development of organometallic anticancer agents.


Molecules | 2014

RutheniumII(η6-arene) Complexes of Thiourea Derivatives: Synthesis, Characterization and Urease Inhibition

Muhammad Hanif; Muhammad Nawaz; Maria V. Babak; Jamshed Iqbal; Alexander Roller; Bernhard K. Keppler; Christian G. Hartinger

RuII(arene) complexes have emerged as a versatile class of compounds to design metallodrugs as potential treatment for a wide range of diseases including cancer and malaria. They feature modes of action that involve classic DNA binding like platinum anticancer drugs, may covalent binding to proteins, or multimodal biological activity. Herein, we report the synthesis and urease inhibition activity of RuII(arene) complexes of the general formula [RuII(η6-p-cymene)(L)Cl2] and [RuII(η6-p-cymene)(PPh3)(L)Cl]PF6 with S-donor systems (L) based on heterocyclic thiourea derivatives. The compounds were characterized by 1H-, 13C{1H}- and 31P{1H}-NMR spectroscopy, as well as elemental analysis. The crystal structure of [chlorido(η6-p-cymene)(imidazolidine-2-thione)(triphenylphosphine)ruthenium(II)] hexafluorophosphate 11 was determined by X-ray diffraction analysis. A signal in the range 175–183 ppm in the 13C{1H}-NMR spectrum indicates the presence of a thione rather than a thiolate. This observation was also confirmed in the solid state by X-ray diffraction analysis of 11 which shows a C=S bond length of 1.720 Å. The compounds were tested for urease inhibitory activity and the thiourea-derived ligands exhibited moderate activity, whereas their corresponding Ru(arene) complexes were not active.


Molecular Pharmaceutics | 2016

Structural Determinants of p53-Independence in Anticancer Ruthenium-Arene Schiff-base Complexes

Mun Juinn Chow; Maria V. Babak; Daniel Yuan Qiang Wong; Giorgia Pastorin; Christian Gaiddon; Wee Han Ang

p53 is a key tumor suppressor gene involved in key cellular processes and implicated in cancer therapy. However, it is inactivated in more than 50% of all cancers due to mutation or overexpression of its negative regulators. This leads to drug resistance and poor chemotherapeutic outcome as most clinical drugs act via a p53-dependent mechanism of action. An attractive strategy to circumvent this resistance would be to identify new anticancer drugs that act via p53-independent mode of action. In the present study, we identified 9 Ru (II)-Arene Schiff-base (RAS) complexes able to induce p53-independent cytotoxicity and discuss structural features that are required for their p53-independent activity. Increasing hydrophobicity led to an increase in cellular accumulation in cells with a corresponding increase in efficacy. We further showed that all nine complexes demonstrated p53-independent activity. This was despite significant differences in their physicochemical properties, suggesting that the iminoquinoline ligand, a common structural feature for all the complexes, is required for the p53-independent activity.


ChemMedChem | 2014

Efficiently detecting metallodrug-protein adducts: ion trap versus time-of-flight mass analyzers.

Samuel M. Meier; Maria V. Babak; Bernhard K. Keppler; Christian G. Hartinger

Modern mass spectrometry techniques have increasingly found use in studies on the binding of anticancer metallodrugs to potential cellular targets. In this context, investigations on the detection efficiency of adduct formation between antiproliferative Ru(arene) complexes and proteins in dependence of the mass analyzer used in the electrospray ionization (ESI) mass spectrometer are presented. The potential in detecting adducts between the metal center and the protein was found to be dependent on the mass analyzer and the denticity of the metal–protein interaction. This might be related to the design of the mass analyzers with different conditions in the ion travelling pathways, which affects adducts when the protein acts as a monodentate ligand more highly than in cases when the protein is a multidentate ligand. This could also impact the biological activity and indicate different pathways of metabolism of biomolecule adducts.


ChemMedChem | 2018

Development of an Efficient Dual-Action GST-Inhibiting Anticancer Platinum(IV) Prodrug

Keefe Guang Zhi Lee; Maria V. Babak; Andrea Weiss; Paul J. Dyson; Patrycja Nowak-Sliwinska; Diego Montagner; Wee Han Ang

The cytotoxicity of cisplatin (cDDP) is enhanced when co‐administered with ethacrynic acid (EA), a glutathione S‐transferase (GST) inhibitor. A PtIV–EA conjugate containing a cDDP core and two axial ethacrynate ligands (compound 1) was shown to be an excellent inhibitor of GST, but did not readily release a PtII species to exert a synergistic cytotoxic effect. In this study, a redesigned PtIV construct composed of a cDDP core with one axial ethacrynate ligand and one axial hydroxido ligand (compound 2) was prepared and shown to overcome the limitations of compound 1. The EA ligand in 2 is readily released in vitro together with a cytotoxic PtII species derived from cisplatin, working together to inhibit cell proliferation in cDDP‐resistant human ovarian cancer cells. The in vitro activity translates well in vivo with 2, showing effective (∼80 %) inhibition of tumor growth in a human ovarian carcinoma A2780 tumor model, while showing considerably lower toxicity than cisplatin, thus validating the new design strategy.


Chemistry-an Asian Journal | 2018

Designed Precursor for the Controlled Synthesis of Highly Active Atomic and Sub-nanometric Platinum Catalysts on Mesoporous Silica

Sudipta De; Maria V. Babak; Max J. Hülsey; Wee Han Ang; Ning Yan

The development of new methods to synthesize nanometric metal catalysts has always been an important and prerequisite step in advanced catalysis. Herein, we design a stable nitrogen ligated Pt complex for the straightforward synthesis by carbonization of uniformly sized atomic and sub-nanometric Pt catalysts supported on mesoporous silica. During the carbonization of the Pt precursor into active Pt species, the nitrogen-containing ligand directed the decomposition in a controlled fashion to maintain uniform sizes of the Pt species. The nitrogen ligand had a key role to stabilize the single Pt atoms on a weak anchoring support like silica. The Pt catalysts exhibited remarkable activities in the hydrogenation of common organic functional groups with turnover frequencies higher than in previous studies. By a simple post-synthetic treatment, we could selectively remove the Pt nanoparticles to obtain a mixture of single atoms and nanoclusters, extending the applicability of the present method.


Inorganic Chemistry | 2018

NO Releasing and Anticancer Properties of Octahedral Ruthenium–Nitrosyl Complexes with Equatorial 1H-Indazole Ligands

Ewelina Orlowska; Maria V. Babak; Orsolya Dömötör; Éva A. Enyedy; Peter Rapta; Michal Zalibera; Lukáš Bučinský; Michal Malček; Chinju Govind; Venugopal Karunakaran; Yusuf Chouthury Shaik Farid; Tara E. McDonnell; Dominique Luneau; Dominik Schaniel; Wee Han Ang; Vladimir B. Arion

With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, new compounds with four equatorially bound indazole ligands, namely, trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes with two deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively characterized by spectroscopic (IR, UV-vis, 1H NMR) techniques. Compound [2], as well as [3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO, and [5]·0.8CH2Cl2, the latter three obtained by recrystallization of the first isolated compounds (hydrates or anhydrous species) from acetone and dichloromethane, respectively, were studied by X-ray diffraction methods. The photoinduced release of NO in [3]Cl2 and [4]Cl2 was investigated by cyclic voltammetry and resulting paramagnetic NO species were detected by EPR spectroscopy. The quantum yields of NO release were calculated and found to be low (3-6%), which could be explained by NO dissociation and recombination dynamics, assessed by femtosecond pump-probe spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or submicromolar concentration range and are suitable for further development as potential anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and p53-independent mode of action was confirmed. The effects of NO release on the cytotoxicity of the complexes with or without light irradiation were investigated using NO scavenger carboxy-PTIO.


Coordination Chemistry Reviews | 2016

The development of RAPTA compounds for the treatment of tumors

Benjamin S. Murray; Maria V. Babak; Christian G. Hartinger; Paul J. Dyson

Collaboration


Dive into the Maria V. Babak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wee Han Ang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Min Lim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denisa Darvasiová

Slovak University of Technology in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Peter Rapta

Slovak University of Technology in Bratislava

View shared research outputs
Researchain Logo
Decentralizing Knowledge