Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria V. Sharakhova is active.

Publication


Featured researches published by Maria V. Sharakhova.


Science | 2015

A male-determining factor in the mosquito Aedes aegypti

Andrew Brantley Hall; Sanjay Basu; Xiaofang Jiang; Yumin Qi; Vladimir A. Timoshevskiy; James K. Biedler; Maria V. Sharakhova; Rubayet Elahi; Michelle A. Anderson; Xiao-Guang Chen; Igor V. Sharakhov; Zach N. Adelman; Zhijian Tu

Manipulating M factor alters mosquito sex Female mosquitoes feed on blood and in so doing transmit pathogens to millions annually. Although the molecular mechanism for determining sex in many animals is known, the specific factors in mosquitoes have been elusive. This is because sex determination in insects involves a section of the genome that is highly repetitive. Hall et al. now identify a male-determining factor (M factor) in Aedes aegypti. Manipulation of the M factor produced sex-change phenotypes. Knocking out the gene Nix resulted in feminized males, and ectopic expression gave masculinized females. These findings should help to advance strategies for converting female mosquitoes into nonbiting males. Science, this issue p. 1268 An M-locus gene is necessary and sufficient for male development in the mosquito that transmits dengue and yellow fever. Sex determination in the mosquito Aedes aegypti is governed by a dominant male-determining factor (M factor) located within a Y chromosome–like region called the M locus. Here, we show that an M-locus gene, Nix, functions as an M factor in A. aegypti. Nix exhibits persistent M linkage and early embryonic expression, two characteristics required of an M factor. Nix knockout with clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 resulted in largely feminized genetic males and the production of female isoforms of two key regulators of sexual differentiation: doublesex and fruitless. Ectopic expression of Nix resulted in genetic females with nearly complete male genitalia. Thus, Nix is both required and sufficient to initiate male development. This study provides a foundation for mosquito control strategies that convert female mosquitoes into harmless males.


Genome Biology | 2014

Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

Xiaofang Jiang; Ashley Peery; A. Brantley Hall; Atashi Sharma; Xiao Guang Chen; Robert M. Waterhouse; Aleksey Komissarov; Michelle M. Riehle; Yogesh S. Shouche; Maria V. Sharakhova; Dan Lawson; Nazzy Pakpour; Peter Arensburger; Victoria L M Davidson; Karin Eiglmeier; Scott J. Emrich; Phillip George; Ryan C. Kennedy; Shrinivasrao P. Mane; Gareth Maslen; Chioma Oringanje; Yumin Qi; Robert E. Settlage; Marta Tojo; Jose M. C. Tubio; Maria F. Unger; Bo Wang; Kenneth D. Vernick; José M. C. Ribeiro; Anthony A. James

BackgroundAnopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range.ResultsHere, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism.ConclusionsThe genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.


Journal of Medical Entomology | 2006

A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera : Culicidae): Application for physical mapping

Maria V. Sharakhova; Ai Xia; Sarah I. Mcalister; Igor V. Sharakhov

To facilitate physical genome mapping, we have developed a new cytogenetic photomap for Anopheles stephensi (Liston) (Diptera: Culicidae), an important malaria vector in Asia. The high-resolution images of the ovarian polytene chromosomes have been straightened and divided by numbered divisions and lettered subdivisions. The exact chromosomal locations of eight DNA probes have been determined by fluorescent in situ hybridization. Using the DNA sequences, we have established correspondence between chromosomal arms among An. stephensi, Anopheles gambiae (Patton), and Anopheles funestus (Giles). The results support previous cytogenetic observations of arm translocations taking place during diversification of the species. To make the cytogenetic map useful for population genetics studies, we have indicated the chromosomal positions for the breakpoints of 19 polymorphic inversions.


BMC Genomics | 2013

Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females

Andrew Brantley Hall; Yumin Qi; Vladimir A. Timoshevskiy; Maria V. Sharakhova; Igor V. Sharakhov; Zhijian Tu

BackgroundY chromosomes are responsible for the initiation of male development, male fertility, and other male-related functions in diverse species. However, Y genes are rarely characterized outside a few model species due to the arduous nature of studying the repeat-rich Y.ResultsThe chromosome quotient (CQ) is a novel approach to systematically discover Y chromosome genes. In the CQ method, genomic DNA from males and females is sequenced independently and aligned to candidate reference sequences. The female to male ratio of the number of alignments to a reference sequence, a parameter called the chromosome quotient (CQ), is used to determine whether the sequence is Y-linked. Using the CQ method, we successfully identified known Y sequences from Homo sapiens and Drosophila melanogaster. The CQ method facilitated the discovery of Y chromosome sequences from the malaria mosquitoes Anopheles stephensi and An. gambiae. Comparisons to transcriptome sequence data with blastn led to the discovery of six Anopheles Y genes, three from each species. All six genes are expressed in the early embryo. Two of the three An. stephensi Y genes were recently acquired from the autosomes or the X. Although An. stephensi and An. gambiae belong to the same subgenus, we found no evidence of Y genes shared between the species.ConclusionsThe CQ method can reliably identify Y chromosome sequences using the ratio of alignments from male and female sequence data. The CQ method is widely applicable to species with fragmented genome assemblies produced from next-generation sequencing data. Analysis of the six Y genes characterized in this study indicates rapid Y chromosome evolution between An. stephensi and An. gambiae. The Anopheles Y genes discovered by the CQ method provide unique markers for population and phylogenetic analysis, and opportunities for novel mosquito control measures through the manipulation of sexual dimorphism and fertility.


PLOS ONE | 2010

Genome Landscape and Evolutionary Plasticity of Chromosomes in Malaria Mosquitoes

Ai Xia; Maria V. Sharakhova; Scotland Leman; Zhijian Tu; Jeffrey A. Bailey; Christopher D. Smith; Igor V. Sharakhov

Background Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates. Methodology/Principal Findings To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus. Conclusions/Significance These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type of repetitive element, is likely responsible for arm-specific rates of rearrangements.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes

Andrew Brantley Hall; Philippos-Aris Papathanos; Atashi Sharma; Changde Cheng; Omar S. Akbari; Lauren A. Assour; Nicholas H. Bergman; Alessia Cagnetti; Andrea Crisanti; Tania Dottorini; Elisa Fiorentini; Roberto Galizi; Jonathan Hnath; Xiaofang Jiang; Sergey Koren; Tony Nolan; Diane Radune; Maria V. Sharakhova; Aaron Steele; Vladimir A. Timoshevskiy; Nikolai Windbichler; Simo Zhang; Matthew W. Hahn; Adam M. Phillippy; Scott J. Emrich; Igor V. Sharakhov; Zhijian Jake Tu; Nora J. Besansky

Significance Interest in male mosquitoes has been motivated by the potential to develop novel vector control strategies, exploiting the fact that males do not feed on blood or transmit diseases, such as malaria. However, genetic studies of male Anopheles mosquitoes have been impeded by the lack of molecular characterization of the Y chromosome. Here we show that the Anopheles gambiae Y chromosome contains a very small repertoire of genes, with massively amplified tandem arrays of a small number of satellites and transposable elements constituting the vast majority of the sequence. These genes and repeats evolve rapidly, bringing about remodeling of the Y, even among closely related species. Our study provides a long-awaited foundation for studying mosquito Y chromosome biology and evolution. Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Insect Molecular Biology | 2010

High-resolution cytogenetic map for the African malaria vector Anopheles gambiae.

Phillip George; Maria V. Sharakhova; Igor V. Sharakhov

Cytogenetic and physical maps are indispensible for precise assembly of genome sequences, functional characterization of chromosomal regions, and population genetic and taxonomic studies. We have created a new cytogenetic map for Anopheles gambiae by using a high‐pressure squash technique that increases overall band clarity. To link chromosomal regions to the genome sequence, we attached genome coordinates, based on 302 markers of bacterial artificial chromosome, cDNA clones, and PCR‐amplified gene fragments, to the chromosomal bands and interbands at approximately a 0.5–1 Mb interval. In addition, we placed the breakpoints of seven common polymorphic inversions on the map and described the chromosomal landmarks for the arm and inversion identification. The maps increased resolution can be used to further enhance physical mapping, improve genome assembly, and stimulate epigenomic studies of malaria vectors.


PLOS Neglected Tropical Diseases | 2013

An Integrated Linkage, Chromosome, and Genome Map for the Yellow Fever Mosquito Aedes aegypti

Vladimir A. Timoshevskiy; David W. Severson; Becky deBruyn; William C. Black; Igor V. Sharakhov; Maria V. Sharakhova

Background Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs) related to the mosquitos ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. Methodology/Principal Findings Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. Conclusion This study developed an integrated linkage, chromosome, and genome map—iMap—for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of traits responsible for susceptibility or refractoriness of the mosquito to diverse pathogens.


Infection, Genetics and Evolution | 2011

Cytogenetic map for Anopheles nili: application for population genetics and comparative physical mapping.

Maria V. Sharakhova; Christophe Antonio-Nkondjio; Ai Xia; Cyrille Ndo; Parfait Awono-Ambene; Frédéric Simard; Igor V. Sharakhov

Anopheles nili is one of the major malaria vectors in Africa with a wide geographic distribution. However, the taxonomic and population genetic studies on this species are scarce. New research tools are urgently needed to genetically characterize this important malaria vector. In this study, a high-resolution cytogenetic map was developed for An. nili polytene chromosomes. Chromosomes were straightened and subdivided into 46 numbered divisions according to the banding pattern. Population analysis of An. nili females collected in Burkina Faso revealed the presence of two highly polymorphic inversions on the 2R chromosomal arm. A statistically significant departure from Hardy-Weinberg equilibrium due to a deficit in heterozygotes was detected for inversion 2Rb. To determine chromosome homologies and gene order conservation between An. nili and other major malaria vectors, PCR probes based on the An. gambiae coding sequences were mapped to An. nili chromosomes. Comparative mapping demonstrated that An. nili chromosomes have an An. stephensi-like arm association and that whole-arm translocations and paracentric inversions were the major types of rearrangement in evolution of these mosquitoes. The minimum number of fixed inversions among An. nili, An. gambiae, and An. stephensi was calculated using the Multiple Genome Rearrangements (MGR), Genome Rearrangements In Man and Mouse (GRIMM), and Sorting Permutation by Reversals and block-INterchanGes (SPRING) programs. The data suggest that the An. nili is, at least, as diverged from An. gambiae as An. stephensi. We provide evidence that 2La/a arrangement of An. gambiae is present in outgroup species An. nili and An. stephensi confirming the ancestral status of the 2La inversion in the An. gambiae complex. Availability of the new polytene chromosome map, polymorphic inversions, and physically mapped DNA markers for An. nili will further stimulate population genetic, taxonomic, and genomic studies of this neglected malaria vector.


Molecular Genetics and Genomics | 2007

Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi

Christina Scali; Tony Nolan; Igor V. Sharakhov; Maria V. Sharakhova; Andrea Crisanti; Flaminia Catteruccia

Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector.

Collaboration


Dive into the Maria V. Sharakhova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Koren

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Phillippy

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge