Maria V. Sudnitsyna
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria V. Sudnitsyna.
Current Protein & Peptide Science | 2012
Maria V. Sudnitsyna; Evgeny V. Mymrikov; Alim S. Seit-Nebi; Nikolai B. Gusev
Small heat shock proteins (sHsp) form a large ubiquitous family of proteins expressed in all phyla of living organisms. The members of this family have low molecular masses (13-43 kDa) and contain a conservative α-crystallin domain. This domain (about 90 residues) consists of several β-strands forming two β-sheets packed in immunoglobulinlike manner. The α-crystallin domain plays an important role in formation of stable sHsp dimers, which are the building blocks of the large sHsp oligomers. A large N-terminal domain and a short C-terminal extension flank the α-crystallin domain. Both the N-terminal domain and the C-terminal extension are flexible, susceptible to proteolysis, prone to posttranslational modifications, and are predominantly intrinsically disordered. Differently oriented N-terminal domains interact with each other, with the core α-crystallin domain of the same or neighboring dimers and play important role in formation of large sHsp oligomers. Phosphorylation of certain sites in the N-terminal domain affects the sHsp quaternary structure, the sHsp interaction with target proteins and the sHsp chaperone-like activity. The C-terminal extension often carrying the conservative tripeptide (I/V/L)-X-(I/V/L) is capable of binding to a hydrophobic groove on the surface of the core α-crystallin domain of neighboring dimer, thus affecting the plasticity and the overall structure of sHsp oligomers. The Cterminal extension interacts with target proteins and affects their interaction with the α-crystallin domain increasing solubility of the complexes formed by sHsp and their targets. Thus, disordered N- and C-terminal sequences play important role in the structure, regulation and functioning of sHsp.
Biochemistry | 2012
Petr N. Datskevich; Victoria V. Nefedova; Maria V. Sudnitsyna; Nikolai B. Gusev
The structure and properties of different members of a large family of small heat shock proteins (sHsp) playing an important role in cell homeostasis are described. Participation of the N-terminal domain in formation of large oligomers and chaperone activity of sHsp is analyzed. The structure of the α-crystallin domain of sHsp is characterized and the role of this domain in sHsp dimerization and chaperone activity is discussed. The properties of the C-terminal region of sHsp are described, and its participation in formation of large oligomers and chaperone activity are analyzed. The data from the literature on HspB1 and HspB3 mutations are presented, and involvement of these mutations in development of certain neurodegenerative diseases is discussed. Mutations of HspB4 are described and data on involvement of these mutations in development of cataract are presented. Multiple effects of HspB5 mutations are analyzed, and data are presented indicating that mutations of this protein are accompanied by development of different congenital diseases, such as cataract and different types of myopathies. The data on HspB6 and HspB8 mutations are presented, and feasible effects of these mutations on proteins structure are analyzed. Probable mechanisms underlying sHsp mutation-induced development of different congenital diseases are discussed.
Archives of Biochemistry and Biophysics | 2011
Nikolai N. Sluchanko; Maria V. Sudnitsyna; Ivan S. Chernik; Alim S. Seit-Nebi; Nikolai B. Gusev
Effect of phosphomimicking mutations of 14-3-3ζ on its interaction with phosphorylated shortest isoform of human tau protein and phosphorylated human small heat shock protein HspB6 (Hsp20) was analyzed. Chemical crosslinking and native gel electrophoresis indicate that mutations S184E and T232E weakly affect interaction of 14-3-3 with phosphorylated tau protein, whereas mutations S58E and S58E/S184E/T232E significantly impair interaction of 14-3-3 and tau. Size-exclusion chromatography, chemical crosslinking and immunoprecipitation revealed that phosphomimicking mutations S58E and S58E/S184E/T232E strongly decrease, mutation T232E weakly affects and mutation S184E improves interaction of 14-3-3 with phosphorylated HspB6. Thus, mutation mimicking phosphorylation of Ser58 dramatically decreases interaction of 14-3-3 with two target proteins and this effect might be due to destabilization of the dimeric structure of 14-3-3 and/or conformational changes of the target-binding site. The mutation mimicking phosphorylation of Thr232 weakly affects interaction of 14-3-3 with both proteins. The mutation mimicking phosphorylation of Ser184 does not markedly affect interaction with tau protein and improves the interaction of 14-3-3 with HspB6. Thus, effect of 14-3-3 phosphorylation depends on the nature of the target protein and therefore, phosphorylation of 14-3-3 might affect its target specificity.
Biochemistry | 2011
Nikolai N. Sluchanko; Maria V. Sudnitsyna; Alim S. Seit-Nebi; Alfred A. Antson; Nikolai B. Gusev
Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E(5), (12)LAE(14), and (82)YREKIE(87). Under a wide range of expression conditions in Escherichia coli, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ.
Biochimica et Biophysica Acta | 2014
Anna S. Chalova; Maria V. Sudnitsyna; Sergei V. Strelkov; Nikolai B. Gusev
Physico-chemical properties of four mutants (T164A, T180I, P182S and R188W) of human small heat shock protein HspB1 (Hsp27) associated with neurodegenerative diseases were analyzed by means of fluorescence spectroscopy, dynamic light scattering, size-exclusion chromatography and measurement of chaperone-like activity. Mutation T164A was accompanied by destabilization of the quaternary structure and decrease of thermal stability without any significant changes of chaperone-like activity. Mutations T180I and P182S are adjacent or within the conserved C-terminal motif IPI/V. Replacement T180⇒I leading to the formation of hydrophobic cluster consisting of three Ile produced small increase of thermal stability without changes of chaperone-like activity. Mutation P182S induced the formation of metastable large oligomers of HspB1 with apparent molecular weight of more than 1000kDa. Oligomers of P182S have very low thermal stability and undergo irreversible aggregation at low temperature. The P182S mutant forms mixed oligomers with the wild type HspB1 and the properties of these mixed oligomers are intermediate between those of the wild type HspB1 and its mutant. Mutation R188W did not significantly affect quaternary structure or thermal stability of HspB1, but was accompanied by a pronounced decrease of its chaperone-like activity. All mutations analyzed are associated with hereditary motor neuropathies or Charcot-Marie-Tooth disease type 2; however, molecular mechanisms underlying pathological effects are specific for each of these mutants.
Archives of Biochemistry and Biophysics | 2013
Victoria V. Nefedova; Maria V. Sudnitsyna; Sergei V. Strelkov; Nikolai B. Gusev
Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.
Protein Expression and Purification | 2012
Petr N. Datskevich; Evgeny V. Mymrikov; Nikolai N. Sluchanko; Anton A. Shemetov; Maria V. Sudnitsyna; Nikolai B. Gusev
Small heat shock proteins (sHsp) are ubiquitously expressed in all human tissues and have an important housekeeping role in preventing the accumulation of aggregates of improperly folded or denatured proteins. They also participate in the regulation of the cytoskeleton, proliferation, apoptosis and many other vital processes. Fluorescent chimeras composed of sHsp and enhanced fluorescent proteins have been used to determine the intracellular locations of small heat shock proteins and to analyse the hetero-oligomeric complexes formed by different sHsp. However, the biochemical properties and chaperone-like activities of these chimeras have not been investigated. To determine the properties of these chimeras, we fused enhanced yellow and cyan fluorescent proteins (EYFP and ECFP) to the N-termini of four ubiquitously expressed human small heat shock proteins: HspB1, HspB5, HspB6, and HspB8. The eight fluorescent chimeras of small heat shock proteins and isolated fluorescent proteins were expressed in Escherichia coli. The chimeric proteins were isolated and purified via ammonium sulphate fractionation, ion exchange and size-exclusion chromatography. This method provided 20-100 mg of fluorescent chimeras from 1L of bacterial culture. The spectral properties of the chimeras were similar to those of the isolated fluorescent proteins. The fusion of fluorescent proteins to HspB6 and HspB8, which typically form dimers, did not affect their quaternary structures. Oligomers of the fluorescent chimeras of HspB1 and HspB5 were less stable and contained fewer subunits than oligomers formed by the wild-type proteins. Fusion with EYFP decreased the chaperone-like activity of HspB5 and HspB6 whereas fusion with ECFP increased chaperone-like activity. All fluorescent chimeras of HspB1 and HspB8 had higher chaperone-like activity than the wild-type proteins. Thus, although fluorescent chimeras are useful for many purposes, the fluorescent proteins used to form these chimeras may affect certain important properties of sHsp.
Archives of Biochemistry and Biophysics | 2012
Maria V. Sudnitsyna; Alim S. Seit-Nebi; Nikolai B. Gusev
It has been previously reported that phosphorylated cofilin interacted with 14-3-3ζ protein to generate a sub-micromolar K(d) binary complex. Here we challenge this hypothesis by analyzing the direct association of recombinant cofilin with 14-3-3ζ using different in vitro biochemical methods. Phosphorylated cofilin at high concentration binds to 14-3-3 immobilized on nitrocellulose, however no complex formation was detected by means of native gel electrophoresis or chemical crosslinking. Intact dimeric or mutant monomeric 14-3-3 was unable to form stable complexes with phosphorylated or unphosphorylated cofilin detected by size-exclusion chromatography. In co-sedimentation assay 14-3-3 did not affect interaction of cofilin with F-actin. The data of native gel electrophoresis indicate that 14-3-3 did not affect interaction of cofilin with G-actin. Thus, cofilin only weakly interacts with 14-3-3 and therefore cannot directly compete with phosphorylated small heat shock protein HspB6 for its binding to 14-3-3. It is hypothesized that phosphorylated HspB6 might affect interaction of 14-3-3 with protein phosphatases (and/or protein kinases) involved in dephosphorylation (or phosphorylation) of cofilin and by this means regulate cofilin-dependent reorganization of cytoskeleton.
Biochemistry | 2015
Victoria V. Nefedova; Lydia K. Muranova; Maria V. Sudnitsyna; A. S. Ryzhavskaya; Nikolai B. Gusev
Classification of small heat shock proteins (sHsp) is presented and processes regulated by sHsp are described. Symptoms of hereditary distal neuropathy are described and the genes whose mutations are associated with development of this congenital disease are listed. The literature data and our own results concerning physicochemical properties of HspB1 mutants associated with Charcot–Marie–Tooth disease are analyzed. Mutations of HspB1, associated with hereditary motor neuron disease, can be accompanied by change of the size of HspB1 oligomers, by decreased stability under unfavorable conditions, by changes in the interaction with protein partners, and as a rule by decrease of chaperone-like activity. The largest part of these mutations is accompanied by change of oligomer stability (that can be either increased or decreased) or by change of intermonomer interaction inside an oligomer. Data on point mutation of HspB3 associated with axonal neuropathy are presented. Data concerning point mutations of Lys141 of HspB8 and those associated with hereditary neuropathy and different forms of Charcot–Marie–Tooth disease are analyzed. It is supposed that point mutations of sHsp associated with distal neuropathies lead either to loss of function (for instance, decrease of chaperone-like activity) or to gain of harmful functions (for instance, increase of interaction with certain protein partners).
The big book on small heat shock proteins | 2015
Maria V. Sudnitsyna; Nikolai N. Sluchanko; Nikolai B. Gusev
HspB6 (Hsp20) is a member of the large family of human small heat shock proteins. In contrast to other human small heat shock proteins (HspB1, HspB5) forming large oligomers, HspB6 predominantly forms stable dimers which tend to self-association. HspB6 is ubiquitously expressed in practically all human tissues, undergoes posttranslational modifications (such as phosphorylation and acetylation) and forms heterooligomeric complexes with two other human small heat shock proteins, HspB1 and HspB5. Possessing chaperone-like activity, HspB6 prevents aggregation of amyloid-β and α-synuclein, decreases cytotoxicity induced by accumulation of amyloids and, interacting with Bag3, modulates autophagosomal degradation of misfolded proteins. HspB6 protects cardiomyocytes from ischemia/reperfusion injuries, prevents cardiac hypertrophy and, possessing antiapoptotic activity, protects cardiomyocytes from different unfavorable conditions. Phosphorylation of HspB6 catalyzed by cyclic nucleotide-dependent protein kinases induces relaxation of different smooth muscle. Exact molecular mechanism underlying relaxation effect of phosphorylated HspB6 in smooth muscle remains enigmatic, but seems to be dependent on the remodeling of actin cytoskeleton. HspB6 is not a genuine actin-binding protein, but interacting with universal adapter protein 14-3-3 seems to be able indirectly affect activity of certain regulatory actin-binding proteins thus inducing cytoskeleton remodeling. Penetrating phosphorylated peptides of HspB6 were successfully used for relaxation of airway smooth muscle and prevention of vasospasm in human blood vessels. Full-size HspB6 and its short peptides modulate platelet aggregation. Versatility of HspB6 is awaiting further investigation, however it can be at least partially explained by the ability of phosphorylated HspB6 to interact with the universal adapter protein 14-3-3 and to displace different target proteins from their complexes with 14-3-3. This displacement may result in modulation of target protein activity and consequently can induce multiple and diverse effects.