Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marı́a Verónica Beligni is active.

Publication


Featured researches published by Marı́a Verónica Beligni.


Planta | 2000

Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants.

Marı́a Verónica Beligni; Lorenzo Lamattina

Abstract. Seed germination, greening of etiolated plants and inhibition of hypocotyl elongation are stimulated by light, which is sensed by various types of photoreceptor. Nitric oxide (NO) has proven to be a bioactive molecule, especially in mammalian cells and, most recently, in plants. Like some phytochrome-dependent processes, many NO-mediated ones are accomplished through increases in cGMP levels. Given these similarities, we proposed that NO could take part in light-mediated events in plants. Here we show that NO promotes seed germination and de-etiolation, and inhibits hypocotyl and internode elongation, processes mediated by light. Two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine induced germination of lettuce (Lactuca sativa L. cv. Grand Rapids) seeds in conditions in which this process is dependent on light (e.g. 26 °C). This was a dose-dependent response and was arrested by addition of an NO scavenger, carboxy-PTIO. In addition, nitrite and nitrate, two NO-decomposition products were ineffective in stimulating germination. Wheat seedlings sprayed with SNP and grown in darkness contained 30–40% more chlorophyll than control seedlings. Nitric-oxide-mediated partial greening was increased by light pulses, wounding and biotic stress. Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) and lettuce seedlings grown in the dark had 20%-shorter hypocotyls in NO treatments than in control ones. On the other hand, internode lengths of potato plants growing under low light intensity and sprayed with 100 μM SNP were also 20% shorter than control ones. These results implicate NO as a stimulator molecule in plant photomorphogenesis, either dependent on or independent of plant photoreceptors.


Plant Physiology | 2002

Nitric Oxide Acts as an Antioxidant and Delays Programmed Cell Death in Barley Aleurone Layers

Marı́a Verónica Beligni; Angelika Fath; Paul C. Bethke; Lorenzo Lamattina; Russell L. Jones

Nitric oxide (NO) is a freely diffusible, gaseous free radical and an important signaling molecule in animals. In plants, NO influences aspects of growth and development, and can affect plant responses to stress. In some cases, the effects of NO are the result of its interaction with reactive oxygen species (ROS). These interactions can be cytotoxic or protective. Because gibberellin (GA)-induced programmed cell death (PCD) in barley (Hordeum vulgare cv Himalaya) aleurone layers is mediated by ROS, we examined the effects of NO donors on PCD and ROS-metabolizing enzymes in this system. NO donors delay PCD in layers treated with GA, but do not inhibit metabolism in general, or the GA-induced synthesis and secretion of α-amylase. α-Amylase secretion is stimulated slightly by NO donors. The effects of NO donors are specific for NO, because they can be blocked completely by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The antioxidant butylated hydroxy toluene also slowed PCD, and these data support our hypothesis that NO is a protective antioxidant in aleurone cells. The amounts of CAT and SOD, two enzymes that metabolize ROS, are greatly reduced in aleurone layers treated with GA. Treatment with GA in the presence of NO donors delays the loss of CAT and SOD. We speculate that NO may be an endogenous modulator of PCD in barley aleurone cells.


Planta | 1999

Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues

Marı́a Verónica Beligni; Lorenzo Lamattina

Abstract. Many environmental conditions subject plants to oxidative stress, in which reactive oxygen species (ROS) are overproduced. These ROS act as transduction signals in plant defense responses, but also cause effects that result in cellular damage. Since nitric oxide (NO) is a bioactive molecule able to scavenge ROS, we analyzed its effect on some cytotoxic processes produced by ROS in potato (Solanum tuberosum L. cv. Pampeana) leaves. Two NO donors: (i) sodium nitroprusside and (ii) a mixed solution of ascorbic acid and NaNO2, were able to prevent chlorophyll loss mediated by the methyl viologen herbicide diquat (a ROS generator), with effective concentrations falling between 10 and 100 μM of the donors. This protection was mimicked by thiourea and penicillamine, two antioxidant compounds. Residual products from NO generation and decomposition failed to prevent chlorophyll decline. A specific NO scavenger, the potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), arrested NO-mediated chlorophyll protection. In addition, some events mediated by ROS during infection of potato leaves with Phytophthora infestans (race 1, 4, 7, 8, 10, 11, mating type A2) were also examined. In this sense, NO proved to markedly decrease ion leakage and the number of lesions, indicative of cell death, produced upon infection in potato leaves. The NO-mediated decrease in ion leakage was also inhibited by carboxy-PTIO. Fragmentation of DNA diminished when P. infestans-infected potato leaves were treated with 100 μM SNP. These results suggest that, acting as an antioxidant, NO can strongly counteract many ROS-mediated cytotoxic processes in plants. Moreover, the evidence of NO functionality in the plant kingdom is strengthened by this work.


Plant Physiology | 2002

Nitric Oxide Improves Internal Iron Availability in Plants

Magdalena Graziano; Marı́a Verónica Beligni; Lorenzo Lamattina

Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μmFe-EDTA in the nutrient solution.S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant.


Journal of Phycology | 2015

The diversity of algal phospholipase D homologs revealed by biocomputational analysis

Marı́a Verónica Beligni; Carolina Bagnato; María B. Prados; H. Bondino; Ana M. Laxalt; Teun Munnik; A. Ten Have

Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD‐PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic‐type PLDs but possess, instead, many bacteria‐like PLDs. Among algae eukaryotic‐type PLDs, we identified C2‐PLDs and PXPH‐like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria‐like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito‐PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP‐PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non‐PLD members within the bacteria‐like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.


BMC Genomics | 2017

Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway

Carolina Bagnato; María B. Prados; Gisela Raquel Franchini; Natalia Scaglia; Silvia Miranda; Marı́a Verónica Beligni

BackgroundMicroalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species.ResultsAmongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography.ConclusionsOur analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.


Archive | 2017

Computational Functional Analysis of Lipid Metabolic Enzymes

Carolina Bagnato; Arjen Ten Have; María B. Prados; Marı́a Verónica Beligni

The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.


Trends in Plant Science | 1999

Is nitric oxide toxic or protective

Marı́a Verónica Beligni; Lorenzo Lamattina


Nitric Oxide | 1999

Nitric Oxide Protects against Cellular Damage Produced by Methylviologen Herbicides in Potato Plants

Marı́a Verónica Beligni; Lorenzo Lamattina


Trends in Plant Science | 2001

Nitric oxide: a non-traditional regulator of plant growth

Marı́a Verónica Beligni; Lorenzo Lamattina

Collaboration


Dive into the Marı́a Verónica Beligni's collaboration.

Top Co-Authors

Avatar

Lorenzo Lamattina

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana M. Laxalt

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

María B. Prados

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

A. Ten Have

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Carlos García-Mata

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Enrique Alberto Madrid

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Gisela Raquel Franchini

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

H. Bondino

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Magdalena Graziano

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Natalia Scaglia

National University of La Plata

View shared research outputs
Researchain Logo
Decentralizing Knowledge