María Victoria Ramos
Academia Nacional de Medicina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Victoria Ramos.
Clinical and Vaccine Immunology | 2009
Leticia V. Bentancor; Marcos Fabián Bilen; Romina J. Fernández Brando; María Victoria Ramos; Luís Carlos de Souza Ferreira; Pablo Daniel Ghiringhelli; Marina S. Palermo
ABSTRACT Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A1 peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A2 peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2ΔAB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A2 sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2ΔAB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.
Journal of Leukocyte Biology | 2005
Gabriela C. Fernández; María Victoria Ramos; Sonia Gómez; Graciela I. Dran; Ramón Exeni; Marta Alduncín; Irene Grimoldi; Graciela Vallejo; Christian Elías-Costa; Martín A. Isturiz; Marina S. Palermo
Monocytes (Mo) mediate central functions in inflammation and immunity. Different subpopulations of Mo with distinct phenotype and functional properties have been described. Here, we investigate the phenotype and function of peripheral Mo from children with hemolytic uremic syndrome (HUS). For this purpose, blood samples from patients in the acute period of HUS (HUS AP) were obtained on admission before dialysis and/or transfusion. The Mo phenotypic characterization was performed on whole blood by flow cytometry, and markers associated to biological functions were selected: CD14 accounting for lipopolysaccharide (LPS) responsiveness, CD11b for adhesion, Fc receptor for immunoglobulin G type I (FcγRI)/CD64 for phagocytosis and cytotoxicity, and human leukocyte antigen (HLA)‐DR for antigen presentation. Some of these functions were also determined. Moreover, the percentage of CD14+ CD16+ Mo was evaluated. We found that the entire HUS AP Mo population exhibited reduced CD14, CD64, and CD11b expression and decreased LPS‐induced tumor necrosis factor production and Fcγ‐dependent cytotoxicity. HUS AP showed an increased percentage of CD14+ CD16+ Mo with higher CD16 and lower CD14 levels compared with the same subset from healthy children. Moreover, the CD14++ CD16– Mo subpopulation of HUS AP had a decreased HLA‐DR expression, which correlated with severity. In conclusion, the Mo population from HUS AP patients presents phenotypic and functional alterations. The contribution to the pathogenesis and the possible scenarios that led to these changes are discussed.
Clinical and Experimental Immunology | 2008
R J F Brando; E Miliwebsky; Leticia V. Bentancor; N Deza; A Baschkier; María Victoria Ramos; G. C. Fernández; Roberto Meiss; M Rivas; Marina S. Palermo
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infections are considered a public health problem in both developed and developing countries because of their increasing incidence and the severity of clinical presentation. Approximately 10% of infected patients develop complications such as haemolytic uraemic syndrome (HUS) characterized by acute renal failure, thrombocytopenia and haemolytic anaemia. The precise sequence of events leading to HUS is still understood incompletely. Because of the lack of a reproducible small animal model for EHEC infections, in vivo studies examining EHEC–host early interactions are limited and insufficient. The aim of this study was to characterize the weaned BALB/c mouse as a model of E. coli O157:H7 infection. In this paper we report that human Shiga toxin 2 (Stx2)‐producing EHEC strains can adhere to the intestinal epithelium of weaned BALB/c mice, and produce local damage which leads to systemic disease and death in a percentage of infected mice. The lethality of the EHEC strain is closely age‐dependent, and is related to the bacterial ability to colonize intestine and to produce Stx2. It can be concluded that the weaned BALB/c mouse can be used as a small animal model to study host early responses, and the role of bacterial pathogenic factors in the induction of systemic disease, thus providing a useful tool for the evaluation of therapeutic or vaccine approaches.
Clinical and Experimental Immunology | 2006
Gabriela C. Fernández; M. F. Lopez; Sonia Gómez; María Victoria Ramos; Leticia V. Bentancor; R. J. Fernandez-Brando; Verónica I. Landoni; Graciela I. Dran; Roberto Meiss; M. A. Isturiz; Marina S. Palermo
It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the haemolytic uraemic syndrome (HUS). However, the contribution of the inflammatory response in the pathogenesis of the disease has also been well established. Neutrophils (PMN) represent a central component of inflammation during infections, and patients with high peripheral PMN counts at presentation have a poor prognosis. The mouse model of HUS, by intravenous injection of pure Stx type 2 (Stx2), reproduces human neutrophilia and allows the study of early events in the course of Stx2‐induced pathophysiological mechanisms. The aim of this study was to address the contribution of PMN on Stx2 toxicity in a murine model of HUS, by evaluating the survival and renal damage in mice in which the granulocytic population was depleted. We found that the absence of PMN reduced Stx2‐induced lethal effects and renal damage. We also investigated the mechanisms underlying Stx2‐induced neutrophilia, studying the influence of Stx2 on myelopoyesis, on the emergence of cells from the bone marrow and on the in vivo migration into tissues. Stx2 administration led to an accelerated release of bone marrow cells, which egress at an earlier stage of maturation, together with an increase in the proliferation of myeloid progenitors. Moreover, Stx2‐treated mice exhibited a lower migratory capacity to a local inflammatory site. In conclusion, PMN are essential in the pathogenesis of HUS and neutrophilia is not merely an epiphenomenon, but contributes to Stx2‐damaging mechanism by potentiating Stx2 toxicity.
Pediatric Research | 2007
Gabriela C. Fernández; Sonia Gómez; María Victoria Ramos; Leticia V. Bentancor; Romina Jimena Fernandez-Brando; Verónica I. Landoni; Laura Lopez; Flavia Ramirez; Mario Diaz; Marta Alduncín; Irene Grimoldi; Ramón Exeni; Martín A. Isturiz; Marina S. Palermo
Hemolytic Uremic Syndrome (HUS) is the main cause of acute renal failure in children. The high percentage of patients who develop long-term sequelae constitutes an important medical concern. The identification of parameters that correlate with the degree of renal failure may be useful to plan the best treatment soon after hospitalization. Here, we investigated the functional state of neutrophils (PMN) from HUS patients on admission, before dialysis and/or transfusion, in relation to the severity of renal impairment reached during the acute period (AP). We found that all PMN activation parameters measured in severe cases of HUS (HUS AP3) were statistically lower comparing to children with mild cases of HUS (HUS AP1). As HUS PMN phenotype and dysfunction is compatible with that of cells undergoing cell death, we also studied spontaneous apoptosis. Not only were HUS PMN not apoptotic, but HUS AP3 PMN showed an increased survival. Almost all phenotypic and functional parameters measured on PMN correlated with severity. Our results revealed a marked deactivation of PMN in severe cases of HUS, and suggest that studying the functional state of PMN could be of prognostic value.
PLOS ONE | 2011
Romina Jimena Fernández-Brando; Leticia V. Bentancor; Maria Pilar Mejias; María Victoria Ramos; Andrea Exeni; Claudia Exeni; María del Carmen Laso; Ramón Exeni; M. A. Isturiz; Marina S. Palermo
Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with a broad spectrum of clinical manifestations that include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Systemic Stx toxemia is considered to be central to the genesis of HUS. Distinct methods have been used to evaluate anti-Stx response for immunodiagnostic or epidemiological analysis of HUS cases. The development of enzyme-linked immunosorbent assay (ELISA) and western blot (WB) assay to detect the presence of specific antibodies to Stx has introduced important advantages for serodiagnosis of HUS. However, application of these methods for seroepidemiological studies in Argentina has been limited. The aim of this work was to develop an ELISA to detect antibodies against the B subunit of Stx2, and a WB to evaluate antibodies against both subunits of Stx2 and Stx1, in order to analyze the pertinence and effectiveness of these techniques in the Argentinean population. We studied 72 normal healthy children (NHC) and 105 HUS patients of the urban pediatric population from the surrounding area of Buenos Aires city. Using the WB method we detected 67% of plasma from NHC reactive for Stx2, but only 8% for Stx1. These results are in agreement with the broad circulation of Stx2-expressing STEC in Argentina and the endemic behavior of HUS in this country. Moreover, the simultaneous evaluation by the two methods allowed us to differentiate acute HUS patients from NHC with a great specificity and accuracy, in order to confirm the HUS etiology when pathogenic bacteria were not isolated from stools.
PLOS ONE | 2013
Leticia V. Bentancor; Marcos Fabián Bilen; María Pilar Mejías; Romina J. Fernández-Brando; Cecilia A. Panek; María Victoria Ramos; Gabriela C. Fernández; Martín A. Isturiz; Pablo Daniel Ghiringhelli; Marina S. Palermo
Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.
Scientific Reports | 2016
Maria Pilar Mejias; Yanina Hiriart; Constanza Lauché; Romina Jimena Fernandez-Brando; Romina Pardo; Andrea C. Bruballa; María Victoria Ramos; Fernando A. Goldbaum; Marina S. Palermo; Vanesa Zylberman
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome.
Journal of Innate Immunity | 2016
María Victoria Ramos; Maria Pilar Mejias; Florencia Sabbione; Romina Jimena Fernandez-Brando; Adriana Santiago; María M. Amaral; Ramón Exeni; Analía S. Trevani; Marina S. Palermo
Hemolytic uremic syndrome (HUS), a vascular disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure, is caused by enterohemorrhagic Shiga toxin (Stx)-producing bacteria, which mainly affect children. Besides Stx, the inflammatory response mediated by neutrophils (PMN) is essential to HUS evolution. PMN can release neutrophil extracellular traps (NET) composed of DNA, histones, and other proteins. Since NET are involved in infectious and inflammatory diseases, the aim of this work was to investigate the contribution of NET to HUS. Plasma from HUS patients contained increased levels of circulating free-DNA and nucleosomes in comparison to plasma from healthy children. Neutrophils from HUS patients exhibited a greater capacity to undergo spontaneous NETosis. NET activated human glomerular endothelial cells, stimulating secretion of the proinflammatory cytokines IL-6 and IL-8. Stx induced PMN activation as judged by its ability to trigger reactive oxygen species production, increase CD11b and CD66b expression, and induce NETosis in PMN from healthy donors. During HUS, NET can contribute to the inflammatory response and thrombosis in the microvasculature and thus to renal failure. Intervention strategies to inhibit inflammatory mechanisms mediated by PMN, such as NETosis, could have a potential therapeutic impact towards amelioration of the severity of HUS.
Cellular & Molecular Immunology | 2015
Cecilia Analia Panek; María Victoria Ramos; Maria Pilar Mejias; María Jimena Abrey-Recalde; Romina Jimena Fernandez-Brando; María Soledad Gori; Gabriela Salamone; Marina S. Palermo
Circulating monocytes (Mos) may continuously repopulate macrophage (MAC) or dendritic cell (DC) populations to maintain homeostasis. MACs and DCs are specialized cells that play different and complementary immunological functions. Accordingly, they present distinct migratory properties. Specifically, whereas MACs largely remain in tissues, DCs are capable of migrating from peripheral tissues to lymphoid organs. The aim of this work was to analyze the expression of the fractalkine receptor (CX3CR1) during the monocytic differentiation process. Freshly isolated Mos express high levels of both CX3CR1 mRNA and protein. During the Mo differentiation process, CX3CR1 is downregulated in both DCs and MACs. However, MACs showed significantly higher CX3CR1 expression levels than did DC. We also observed an antagonistic CX3CR1 regulation by interferon (IFN)-γ and interleukin (IL)-4 during MAC activation through the classical and alternative MAC pathways, respectively. IFN-γ inhibited the loss of CX3CR1, but IL-4 induced it. Additionally, we demonstrated an association between CX3CR1 expression and apoptosis prevention by soluble fractalkine (sCX3CL1) in Mos, DCs and MACs. This is the first report demonstrating sequential and differential CX3CR1 modulation during Mo differentiation. Most importantly, we demonstrated a functional link between CX3CR1 expression and cell survival in the presence of sCX3CL1.