Mária Vršanská
Institute of Chemistry, Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mária Vršanská.
Journal of Biotechnology | 1997
Peter Biely; Mária Vršanská; Maija Tenkanen; D. Kluepfel
Microbial endo-β-1,4-xylanases (EXs, EC 3.2.1.8) belonging to glycanase families 10 (formerly F) and 11 (formerly G) differ in their action on 4-O-methyl-d-glucurono-d-xylan and rhodymenan, a β-1,3-β-1,4-xylan. Two high molecular mass EXs (family 10), the Cryptococcus albidus EX and X1nA of Streptomyces lividans, liberate from glucuronoxylan aldotetrauronic acid as the shortest acidic fragment, and from rhodymenan an isomeric xylotriose of the structure Xylβ1-3Xylβ1-4Xyl as the shortest fragment containing a β-1,3-linkage. Low molecular mass EXs (family 11), such as the Trichoderma reesei enzymes and XlnB and XlnC of S. lividans, liberate from glucuronoxylan an aldopentauronic acid as the shortest fragment, and from rhodymenan an isomeric xylotetraose as the shortest fragment containing a β-1,3-linkage. The structure of the oligosaccharides was established by: NMR spectroscopy, mass spectrometry of per-O-methylated compounds and enzymic hydrolysis by β-xylosidase and EX, followed by analysis of products by chromatography. The structures of the fragments define in the polysaccharides the linkages attacked and non-attacked by the enzymes. EXs of family 10 require a lower number of unsubstituted consecutive β-1,4-xylopyranosyl units in the main chain and a lower number of consecutive β-1,4-xylopyranosyl linkages in rhodymenan than EXs of family 11. These results, together with a greater catalytic versatility of EXs of family 10, suggest that EXs of family 10 have substrate binding sites smaller than those of EXs of family 11. This suggestion is in agreement with the finding that EXs of family 10 show higher affinity for shorter linear β-1,4-xylooligosaccharides than EXs of family 11. The results are discussed with relevant literature data to understand better the structure-function relationship in this group of glycanases.
Enzyme and Microbial Technology | 1999
Vladimír Puchart; Petros Katapodis; Peter Biely; Lubomír Kremnický; Paul Christakopoulos; Mária Vršanská; Dimitris Kekos; Basil J. Macris; Mahalingeshwara K. Bhat
A group of 17 strains of the thermophilic fungus Thermomyces lanuginosus was examined for the production of xylanases, β-mannanases, arabinanases, and pectinases. All strains were found to be xylanolytic, and several were proven to be outstanding producers of microbial xylanase on glucuronoxylan and corn cobs. The strains hyperproducing xylanase secreted low amounts of xylan-debranching enzymes and did not produce β-mannan and arabinan-degrading enzyme systems. Only the strains showing lower xylanase production exhibited a higher degree of xylan utilization and also the ability to produce a mannanolytic enzyme system. One of the mannanolytic strains was found to be capable of producing arabinan-degrading enzymes. This strain also showed the best production of pectinolytic enzymes during growth on citrus pectin or sugar beet pulp. Some of the strains have good potential for use as sources of important industrial enzymes of high thermal stability.
FEBS Journal | 1991
Peter Biely; Mária Vršanská; Marc Claeyssens
The reaction mechanism of the non-specific endo-1,4-beta-glucanase from Trichoderma reesei QM 9414 (endoglucanase I) was investigated using both reducing-end3H-labelled and universally 14C-labelled cellooligosaccharides, as well as reducing-end3H-labelled xylooligosaccharides. The bond cleavage frequencies of cellooligosaccharides proved to be dependent upon the substrate concentration, especially in the case of cellotriose. In addition to simple hydrolytic cleavage, the enzyme catalyzes reactions along alternative pathways, including transglycosylations leading to products larger than the substrate. Some of these pathways were shown to be reversible. During cellotriose or cellopentaose degradation, substrate resynthesis was demonstrated by incorporation of added radioactive D-glucose or cellobiose. The endoglucanase I is active on xylan and xylooligosaccharides, but less than on soluble cellulose derivatives (e.g. hydroxyethylcellulose) and cellooligosaccharides. The fact that for these different types of substrates the same active site is operative is proven by the ability of the enzyme to utilize cellooligosaccharides and xylooligosaccharides as both glycosyl donors and acceptors. The mixed substrate reactions lead to products composed of D-glucosyl and D-xylosyl residues. The kinetic parameters for cellooligosaccharide degradation can be used for the description of an extended substrate binding site. Of the four putative glycosyl subsites, -II and +II show the highest affinities, 16.7 kJ.mol-1 and 7.1 kJ.mol-1, respectively.
Archives of Microbiology | 1986
Maria Hrmova; Peter Biely; Mária Vršanská
Cellulose- and xylan-degrading enzymes of Trichoderma reesei QM 9414 induced by, sophorose, xylobiose, cellulose and xylan were analyzed by isoelectric focusing. The sophorose-induced enzyme system contained two types of endo-1,4-β-glucanases (EC 3.2.1.4), one specific for cellulose and the other non-specific, hydrolyzing both cellulose and xylan, and exo-1,4-β-glucanases (cellobiohydrolases I, EC 3.2.1.91), i.e. all types of glucanases that are produced during growth on cellulose. Specific endo-1,4-β-xylanases (EC 3.2.1.8) present in the cellulose-containing medium were less abundant in the sophorose-induced enzyme system. Xylobiose and xylan induced only specific endo-1,4-β-xylanases. It is concluded that syntheses of cellulases and β-xylanases in T. reesei QM 9414 are under separate control and that the non-specific endo-1,4-β-glucanases are constituents of the cellulose-degrading enzyme system.
Carbohydrate Research | 1998
Neil A. Bennett; James Ryan; Peter Biely; Mária Vršanská; Lubomir Kremnicky; Basil J. Macris; Dimitris Kekos; Paul Christakopoulos; Petros Katapodis; Marc Claeyssens; Wim Nerinckx; Mahalingeshwara K. Bhat
An endoxylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) from the culture filtrates of T. lanuginosus ATCC 46882 was purified to homogeneity by DEAE-Sepharose and Bio-Gel P-30 column chromatographies. The purified endoxylanase had a specific activity of 888.8 mumol min-1 mg-1 protein and accounted for approximately 30% of the total protein secreted by this fungus. The molecular mass of native (non-denatured) and denatured endoxylanase were 26.3 and 25.7 kD as, respectively. Endoxylanase had a pI of 3.7 and was optimally active between pH 6.0-6.5 and at 75 degrees C. The enzyme showed > 50% of its original activity between pH 5.5-9.0 and at 85 degrees C. The pH and temperature stability studies revealed that this endoxylanase was almost completely stable between pH 5.0-9.0 and up to 60 degrees C for 5 h and at pH 10.0 up to 55 degrees C for 5 h. Thin-layer chromatography (TLC) analysis showed that endoxylanase released mainly xylose (Xyl) and xylobiose (Xyl2) from beechwood 4-O-methyl-D-glucuronoxylan, O-acetyl-4-O-methyl-D-glucuronoxylan and rhodymenan (a beta-(1-->3)-beta(1-->4)-xylan). Also, the enzyme released an acidic xylo-oligosaccharide from 4-O-methyl-D-glucuronoxylan, and an isomeric xylotetraose and an isomeric xylopentaose from rhodymenan. The enzyme hydrolysed [1-3H]-xylo-oligosaccharides in an endofashion, but the hydrolysis of [1-3H]-xylotriose appeared to proceed via transglycosylation. since the xylobiose was the predominant product. Endoxylanase was not active on pNPX and pNPC at 40 and 100 mM for up to 6 h, but showed some activity toward pNPX at 100 mM after 20-24 h. The results suggested that the endoxylanase from T. lanuginosus belongs to family 11.
Biochimica et Biophysica Acta | 2000
Vladimír Puchart; Mária Vršanská; Mahalingeshwara K. Bhat; Peter Biely
An extracellular alpha-galactosidase was purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of a mannanolytic strain of the thermophilic fungus Thermomyces lanuginosus. Molecular mass of the enzyme is 57 kDa. The pure enzyme which has a glycoprotein nature, afforded several forms on IEF, indicating its microheterogeneity. Isoelectric point of the major form was 5.2. Enzyme is the most active against aryl alpha-D-galactosides but efficiently hydrolyzed alpha-glycosidically linked non-reducing terminal galactopyranosyl residues occurring in natural substrates such as melibiose, raffinose, stachyose, and fragments of galactomannan. In addition, the enzyme is able to catalyze efficient degalactosylation of polymeric galactomannans leading to precipitation of the polymers. Stereochemical course of hydrolysis of two substrates, 4-nitrophenyl alpha-galactopyranoside and galactosyl(1)mannotriose, followed by (1)H NMR spectroscopy, pointed out the alpha-anomer of D-galactose was the primary product of hydrolysis from which the beta-anomer was formed by mutarotation. Hence the enzyme is a retaining glycosyl hydrolase. In accord with its retaining character the enzyme catalyzed transgalactosylation from 4-nitrophenyl alpha-galactopyranoside as a glycosyl donor. Amino acid sequence alignment of N-terminal and two internal sequences suggested that the enzyme is a member of family 27 of glycosyl hydrolases.
FEBS Journal | 2007
Mária Vršanská; Katarína Kolenová; Vladimír Puchart; Peter Biely
The mode of action of xylanase A from a phytopathogenic bacterium, Erwinia chrysanthemi, classified in glycoside hydrolase family 5, was investigated on xylooligosaccharides and polysaccharides using TLC, MALDI‐TOF MS and enzyme treatment with exoglycosidases. The hydrolytic action of xylanase A was found to be absolutely dependent on the presence of 4‐O‐methyl‐d‐glucuronosyl (MeGlcA) side residues in both oligosaccharides and polysaccharides. Neutral linear β‐1,4‐xylooligosaccharides and esterified aldouronic acids were resistant towards enzymatic action. Aldouronic acids of the structure MeGlcA3Xyl3 (aldotetraouronic acid), MeGlcA3Xyl4 (aldopentaouronic acid) and MeGlcA3Xyl5 (aldohexaouronic acid) were cleaved with the enzyme to give xylose from the reducing end and products shorter by one xylopyranosyl residue: MeGlcA2Xyl2, MeGlcA2Xyl3 and MeGlcA2Xyl4. As a rule, the enzyme attacked the second glycosidic linkage following the MeGlcA branch towards the reducing end. Depending on the distribution of MeGlcA residues on the glucuronoxylan main chain, the enzyme generated series of shorter and longer aldouronic acids of backbone polymerization degree 3–14, in which the MeGlcA is linked exclusively to the second xylopyranosyl residue from the reducing end. Upon incubation with β‐xylosidase, all acidic hydrolysis products of acidic oligosaccharides and hardwood glucuronoxylans were converted to aldotriouronic acid, MeGlcA2Xyl2. In agreement with this mode of action, xylose and unsubstituted oligosaccharides were essentially absent in the hydrolysates. The E. chrysanthemi xylanase A thus appears to be an excellent biocatalyst for the production of large acidic oligosaccharides from glucuronoxylans as well as an invaluable tool for determination of the distribution of MeGlcA residues along the main chain of this major plant hemicellulose.
FEBS Letters | 2009
Olena Ryabova; Mária Vršanská; Satoshi Kaneko; Willem H. van Zyl; Peter Biely
Investigation of the xylanolytic enzyme system of the xylose‐fermenting yeast Pichia stipitis resulted in the discovery of an extracellular α‐glucuronidase efficiently debranching hardwood glucuronoxylan. This activity is not exhibited by more extensively investigated α‐glucuronidases of glycoside hydrolase (GH) family 67, operating on substrates in which the uronic acid is linked to the non‐reducing xylopyranosyl residues of main chain fragments. The N‐terminus of the purified enzyme corresponded exactly to the P. stipitis gene ABN67901 coding for a protein of unknown function. BLAST search revealed the presence of similar genes in genomes of other microorganisms. These results lead to the emergence of a new family of α‐glucuronidases.
Archives of Microbiology | 1984
Maria Hrmova; Peter Biely; Mária Vršanská; Eva Petráková
The specificity of induction of cellulose- and xylan-degrading enzymes was investigated on the yeast strain Trichosporon cutaneum CCY 30-5-4 using series of compounds structurally related to cellulose and xylan, including monosaccharides, glycosides, glucooligosaccharides and xylooligosaccharides. Determination of activities of secreted cellulase and β-xylanase, intracellular, cell wall bound and extracellular β-glucosidase and β-xylosidase revealed that: (1) The synthesis of xylan-degrading enzymes is induced in the cell only by xylosaccharides, 1,3-β-xylobiose, 1,2-β-xylobiose, 1,4-β-xylosyl-L-arabinose, 1,4-β-xylobiose and thioxylobiose being the best inducers. The xylan-degrading enzymes show different pattern of development in time and discrete cellular localization, i.e. intracellular β-xylosidase precedes extracellular β-xylanase. (2) A true cellulase is not inducible by glucosaccharides and cellulose. Negligible constitutive cellulase activity was detected which was about two orders lower than an induced cellulase in the typical cellulolytic fungus Trichoderma reesei QM 9414. (3) The best inducer of intracellular β-glucosidase splitting cellobiose was thiocellobiose in a wide range of concentration (0.1–10 mM), whereas xylosaccharides at high concentrations induced β-xylosidase of xylobiose type and a non-specific aryl β-D-glucosidase.The results were confirmed by growing cells on cellulose and xylan. T. cutaneum was found to be a xylan-voracious yeast, unable to grow on cellulose.
Biochimica et Biophysica Acta | 2000
Peter Biely; R.P. de Vries; Mária Vršanská; J. Visser
Abstract α-Glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4- O -methyl- D -glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4- O -methyl- D -glucuronosyl-α-1,2- D -xylopyranosyl-β-1,4-xylopyranosyl-β-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D 2 O reaction mixture by 1 H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its β-anomer from which the α-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial α-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).