Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Wächtler is active.

Publication


Featured researches published by Maria Wächtler.


Angewandte Chemie | 2015

Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light

Michael G. Pfeffer; Bernhard Schäfer; Grigory Smolentsev; Jens Uhlig; Elena Nazarenko; Julien Guthmuller; Christian Kuhnt; Maria Wächtler; Benjamin Dietzek; Villy Sundström; Sven Rau

To develop highly efficient molecular photocatalysts for visible light-driven hydrogen production, a thorough understanding of the photophysical and chemical processes in the photocatalyst is of vital importance. In this context, in situ X-ray absorption spectroscopic (XAS) investigations show that the nature of the catalytically active metal center in a (N^N)MCl2 (M=Pd or Pt) coordination sphere has a significant impact on the mechanism of the hydrogen formation. Pd as the catalytic center showed a substantially altered chemical environment and a formation of metal colloids during catalysis, whereas no changes of the coordination sphere were observed for Pt as catalytic center. The high stability of the Pt center was confirmed by chloride addition and mercury poisoning experiments. Thus, for Pt a fundamentally different catalytic mechanism without the involvement of colloids is confirmed.


Journal of Physical Chemistry A | 2014

Ru(II) dyads derived from 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline: versatile photosensitizers for photodynamic applications.

Mat Stephenson; Christian Reichardt; Mitch Pinto; Maria Wächtler; Tariq Sainuddin; Ge Shi; Huimin Yin; Susan Monro; Eric Sampson; Benjamin Dietzek; Sherri A. McFarland

Combining the best attributes of organic photosensitizers with those of coordination complexes is an elegant way to achieve prolonged excited state lifetimes in Ru(II) dyads. Not only do their reduced radiative and nonradiative rates provide ample time for photosensitization of reactive oxygen species at low oxygen tension but they also harness the unique properties of (3)IL states that can act as discrete units or in concert with (3)MLCT states. The imidazo[4,5-f][1,10]phenanthroline framework provides a convenient tether for linking π-expansive ligands such as pyrene to a Ru(II) scaffold, and the stabilizing coligands can fine-tune the chemical and biological properties of these bichromophoric systems. The resulting dyads described in this study exhibited nanomolar light cytotoxicities against cancer cells with photocytotoxicity indices exceeding 400 for some coligands employed. This potency extended to bacteria, where concentrations as low as 10 nM destroyed 75% of a bacterial population. Notably, these dyads remained extremely active against biofilm with light photocytotoxicities against these more resistant bacterial populations in the 10-100 nM regime. The results from this study demonstrate the versatility of these highly potent photosensitizers in destroying both cancer and bacterial cells and expand the scope of compounds that utilize low-lying (3)IL states for photobiological applications.


Angewandte Chemie | 2015

Optimization of hydrogen-evolving photochemical molecular devices.

Michael G. Pfeffer; Tanja Kowacs; Maria Wächtler; Julien Guthmuller; Benjamin Dietzek; Johannes G. Vos; Sven Rau

A molecular photocatalyst consisting of a Ru(II) photocenter, a tetrapyridophenazine bridging ligand, and a PtX2 (X=Cl or I) moiety as the catalytic center functions as a stable system for light-driven hydrogen production. The catalytic activity of this photochemical molecular device (PMD) is significantly enhanced by exchanging the terminal chlorides at the Pt center for iodide ligands. Ultrafast transient absorption spectroscopy shows that the intramolecular photophysics are not affected by this change. Additionally, the general catalytic behavior, that is, instant hydrogen formation, a constant turnover frequency, and stability are maintained. Unlike as observed for the Pd analogue, the presence of excess halide does not affect the hydrogen generation capacity of the PMD. The highly improved catalytic efficiency is explained by an increased electron density at the Pt catalytic center, this is confirmed by DFT studies.


Physical Chemistry Chemical Physics | 2011

Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study

Stephan Kupfer; Julien Guthmuller; Maria Wächtler; Sebastian Losse; Sven Rau; Benjamin Dietzek; Jürgen Popp; Leticia González

The optically active states in a novel (terpyridine)Ru(4H-imidazole) complex displaying an unusually broad and red-shifted absorption in the visible range are investigated experimentally and theoretically. Since this property renders the complex promising for an application as sensitizer in dye-sensitized solar cells, a detailed knowledge on the correlation between features in the absorption spectrum and structural elements is indispensable in order to develop strategies for spectroscopy/theory-guided design of such molecular components. To this aim, time-dependent density functional theory calculations, including solvent effects, are employed to analyze the experimental UV-vis absorption and resonance Raman (RR) spectra of the unprotonated and protonated forms of the complex. This provides a detailed photophysical picture for a complex belonging to a novel class of Ru-polypyridine black absorbers, which can be tuned by external pH stimuli. The complex presents two absorption maxima in the visible region, which are assigned by the calculations to metal-to-ligand charge transfer (MLCT) and intra-ligand states, respectively. RR simulations are performed in resonance with both bands and are found to correctly reproduce the observed effects of protonation. Finally, the examination of the molecular orbitals and of the RR spectra for the MLCT state shows that protonation favors a charge transfer excitation to the 4H-imidazole ligand.


Journal of the American Chemical Society | 2010

Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles. Solid-State 2H NMR and Quantum Chemical Calculations

Torsten Gutmann; Bernadeta Walaszek; Xu Yeping; Maria Wächtler; Iker Del Rosal; Anna Grünberg; Romuald Poteau; Rosa Axet; Guy Lavigne; Bruno Chaudret; Hans-Heinrich Limbach; Gerd Buntkowsky

The (2)H quadrupolar interaction is a sensitive tool for the characterization of deuterium-metal binding states. In the present study, experimental solid-state (2)H MAS NMR techniques are used in the investigations of two ruthenium clusters, D(4)Ru(4)(CO)(12) (1) and D(2)Ru(6)(CO)(18) (2), which serve as model compounds for typical two-fold, three-fold, and octahedral coordination sites on metal surfaces. By line-shape analysis of the (2)H MAS NMR measurements of sample 1, a quadrupolar coupling constant of 67 +/- 1 kHz, an asymmetry parameter of 0.67 +/- 0.1, and an isotropic chemical shift of -17.4 ppm are obtained. In addition to the neutral complex, sample 2 includes two ionic clusters, identified as anionic [DRu(6)(CO)(18)](-) (2(-)) and cationic [D(3)Ru(6)(CO)(18)](+) (2(+)). By virtue of the very weak quadrupolar interaction (<2 kHz) and the strong low-field shift (+16.8 ppm) of 2(-), it is shown that the deuteron is located in the symmetry center of the octahedron spanned by the six ruthenium atoms. For the cationic 2(+), the quadrupolar interaction is similar to that of the neutral 2. Quantum chemical DFT calculations at different model structures for these ruthenium clusters were arranged in order to help in the interpretation of the experimental results. It is shown that the (2)H nuclear quadrupolar interaction is a sensitive tool for distinguishing the binding state of the deuterons to the transition metal. Combining the data from the polynuclear complexes with the data from mononuclear complexes, a molecular ruler for quadrupolar interactions is created. This ruler now permits the solid-state NMR spectroscopic characterization of deuterium adsorbed on the surfaces of catalytically active metal nanoparticles.


Zeitschrift für Physikalische Chemie | 2008

Mechanisms of Dipolar Ortho/Para-H2O Conversion in Ice

Gerd Buntkowsky; Hans-Heinrich Limbach; Bernadeta Walaszek; Anna Adamczyk; Yeping Xu; H. Breitzke; Annika Schweitzer; Torsten Gutmann; Maria Wächtler; Nader de Sousa Amadeu; Daniel Tietze; Bruno Chaudret

Abstract In this paper a possible explanation for an unexpected ortho/para-water ratio in the gas clouds of comets is given. The description is based on the quantum-mechanical density matrix formalism and the spin temperature concept. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a four spin system, created by two nearest neighbour water molecules, spin eigenstates and their dynamics under the influence of their mutual dipolar interactions are studied. It is shown that a fast conversion between ortho- and para-states occurs on a msec time scale, caused by the intermolecular homonuclear magnetic dipolar interaction. Moreover the spin eigenstates of water in an ice crystal are determined by magnetic dipolar interactions and are not given by normal ortho- and para-H2O states of gaseous water. As a result of this the spin temperature of gaseous water evaporated from ice depends strongly on its evaporation history and the ortho/para-ratio of water molecules are only an indirect measure of the temperature of ice crystals from where they descend. This result could explain the unexpected experimentally observed ortho/para-ratios in the clouds of comets.


Chemistry: A European Journal | 2014

Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Black‐Absorbing Ruthenium Complex

Linda Zedler; Stephan Kupfer; Inês Rabelo de Moraes; Maria Wächtler; Rainer Beckert; Michael Schmitt; Jürgen Popp; Sven Rau; Benjamin Dietzek

Ruthenium dyes incorporating a 4H-imidazole chromophore as a ligand exhibit a spectrally broad absorption in the UV/Vis region. Furthermore, they show the ability to store two electrons within the 4H-imidazole ligand. These features render them promising molecular systems, for example, as inter- or intramolecular electron relays. To optimize the structures with respect to their electron-storage capability, it is crucial to understand the impact of structural changes accompanying photoinduced charge transfer in the electronic intermediates of multistep electron-transfer processes. The photophysical properties of these (reactive) intermediates might impact the function of the molecular systems quite substantially. However, the spectroscopic study of short-lived intermediates in stepwise multielectron-transfer processes is experimentally challenging. To this end, this contribution reports on the electrochemical generation of anions identical to intermediate structures and their spectroscopic characterization by in situ resonance Raman and UV/Vis spectroelectrochemistry and computational methods. Thereby, an efficient two-electron pathway to the 4H-imidazole electron-accepting ligand is identified.


Solid State Nuclear Magnetic Resonance | 2008

51V solid-state NMR investigations and DFT studies of model compounds for vanadium haloperoxidases

Annika Schweitzer; Torsten Gutmann; Maria Wächtler; Hergen Breitzke; Axel Buchholz; Winfried Plass; Gerd Buntkowsky

Three cis-dioxovanadium(V) complexes with similar N-salicylidenehydrazide ligands modeling hydrogen bonding interactions of vanadate relevant for vanadium haloperoxidases are studied by (51)V solid-state NMR spectroscopy. Their parameters describing the quadrupolar and chemical shift anisotropy interactions (quadrupolar coupling constant C(Q), asymmetry of the quadrupolar tensor eta(Q), isotropic chemical shift delta(iso), chemical shift anisotropy delta(sigma), asymmetry of the chemical shift tensor eta(sigma) and the Euler angles alpha, beta and gamma) are determined both experimentally and theoretically using DFT methods. A comparative study of different methods to determine the NMR parameters by numerical simulation of the spectra is presented. Detailed theoretical investigations on the DFT level using various basis sets and structural models show that by useful choice of the methodology, the calculated parameters agree to the experimental ones in a very good manner.


Solid State Nuclear Magnetic Resonance | 2009

Correlations between 51V solid-state NMR parameters and chemical structure of vanadium (V) complexes as models for related metalloproteins and catalysts

Annika Fenn; Maria Wächtler; Torsten Gutmann; Hergen Breitzke; Axel Buchholz; Ines Lippold; Winfried Plass; Gerd Buntkowsky

The parameters describing the quadrupolar and CSA interactions of 51V solid-state MAS NMR investigations of model complexes mimicking vanadoenzymes as well as vanadium containing catalysts and enzyme complexes are interpreted with respect to the chemical structure. The interpretation is based on the data of 15 vanadium complexes including two new complexes with previously unpublished data and 13 complexes with data previously published by us. Correlations between the chemical structure and the 51V solid-state NMR data of this class of compounds have been established. Especially for the isotropic chemical shift delta(iso) and the chemical shift anisotropy delta(sigma), correlations with specific structural features like the coordination number of the vanadium atom, the number of coordinating nitrogens, the number of oxygen atoms and the chemical surrounding of the complex could be established for these compounds. Moreover, quantitative correlations between the solid-state NMR parameters and specific bond angles and bond lengths have been obtained. Our results can be of particular interest for future investigations concerning the structure and the mode of action of related vanadoenzymes and vanadate protein assemblies, including the use of vanadate adducts as transition state analogs for phosphate metabolizing systems.


Journal of Physical Chemistry A | 2015

Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5-f][1,10]phenanthroline Ligands

Christian Reichardt; Mitch Pinto; Maria Wächtler; Mat Stephenson; Stephan Kupfer; Tariq Sainuddin; Julien Guthmuller; Sherri A. McFarland; Benjamin Dietzek

The photophysics of a series of Ru(II) dyads based on the 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]-phenanthroline ligand was investigated. The ability of these metal complexes to intercalate DNA and induce cell death upon photoactivation makes them attractive photosensitizers for a range of photobiological applications, including photodynamic therapy. In the present study, time-resolved transient absorption and emission spectroscopy were used to interrogate the photoinduced processes that follow metal-to-ligand charge transfer excitation of the complexes in solution. It was found that energy transfer to pyrene-localized intraligand triplet states, facilitated by torsional motion of the pyrene moiety relative to the imidazo[4,5-f][1,10]phenanthroline ligand, was an important relaxation pathway governing the photophysical dynamics in this class of compounds. Biphasic decay kinetics were assigned to spontaneous (pre-equilibrium) and delayed emission, arising from an equilibrium established between (3)MLCT and (3)IL states. TDDFT calculations supported these interpretations.

Collaboration


Dive into the Maria Wächtler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Guthmuller

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Popp

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Buntkowsky

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge