Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariacristina Crosti is active.

Publication


Featured researches published by Mariacristina Crosti.


Immunity | 2016

Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells

Marco De Simone; Alberto Arrigoni; Grazisa Rossetti; Paola Gruarin; Valeria Ranzani; Claudia Politano; Raoul J. P. Bonnal; Elena Provasi; Maria Lucia Sarnicola; Ilaria Panzeri; Monica Moro; Mariacristina Crosti; Saveria Mazzara; Valentina Vaira; Silvano Bosari; Alessandro Palleschi; Luigi Santambrogio; Giorgio Bovo; Nicola Zucchini; Mauro Totis; Luca Gianotti; Giancarlo Cesana; R Perego; Nirvana Maroni; Andrea Pisani Ceretti; Enrico Opocher; Raffaele De Francesco; Jens Geginat; Hendrik G. Stunnenberg; Sergio Abrignani

Summary Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.


PLOS ONE | 2013

Intracellular Modulation, Extracellular Disposal and Serum Increase of MiR-150 Mark Lymphocyte Activation

Paola de Candia; Anna Torri; Tatiana Gorletta; Maya Fedeli; Elisabetta Bulgheroni; Cristina Cheroni; Francesco Marabita; Mariacristina Crosti; Monica Moro; Elena Pariani; Luisa Romanò; Susanna Esposito; Fabio Mosca; Grazisa Rossetti; Riccardo L. Rossi; Jens Geginat; Giulia Casorati; Paolo Dellabona; Massimiliano Pagani; Sergio Abrignani

Activated lymphocytes release nano-sized vesicles (exosomes) containing microRNAs that can be monitored in the bloodstream. We asked whether elicitation of immune responses is followed by release of lymphocyte-specific microRNAs. We found that, upon activation in vitro, human and mouse lymphocytes down-modulate intracellular miR-150 and accumulate it in exosomes. In vivo, miR-150 levels increased significantly in serum of humans immunized with flu vaccines and in mice immunized with ovalbumin, and this increase correlated with elevation of antibody titers. Immunization of immune-deficient mice, lacking MHCII, resulted neither in antibody production nor in elevation of circulating miR-150. This study provides proof of concept that serum microRNAs can be detected, with minimally invasive procedure, as biomarkers of vaccination and more in general of adaptive immune responses. Furthermore, the prompt reduction of intracellular level of miR-150, a key regulator of mRNAs critical for lymphocyte differentiation and functions, linked to its release in the external milieu suggests that the selective extracellular disposal of microRNAs can be a rapid way to regulate gene expression during lymphocyte activation.


Journal of Immunology | 2006

Identification of Novel Subdominant Epitopes on the Carcinoembryonic Antigen Recognized by CD4+ T Cells of Lung Cancer Patients

Mariacristina Crosti; Renato Longhi; Giuseppe Consogno; Giulio Melloni; Piero Zannini; Maria Pia Protti

The carcinoembryonic Ag (CEA) is an attractive target for immunotherapy because of its expression profile and role in tumor progression. To verify the existence of spontaneous anti-CEA CD4+ T cells in lung cancer patients, we first identified CEA sequences forming naturally processed epitopes, and then used the identified epitopes to test their recognition by CD4+ T cells from the patients. We had previously identified CEA177–189/355–367 as an immunodominant epitope recognized by CD4+ T cells in association with several HLA-DR alleles. In this study, we identified four additional subdominant CEA sequences (CEA99–111, CEA425–437, CEA568–582, and CEA666–678), recognized in association with one or more HLA-DR alleles. Peptide-specific CD4+ T cells produced proinflammatory cytokines when challenged with the native protein and CEA-expressing tumor cells, thus demonstrating that the identified CEA sequences contain naturally processed epitopes. However, CEA is expressed in the thymus and belongs to the CD66 family that comprises highly homologous molecules expressed on hemopoietic cells, raising concerns about tolerance interfering with the in vivo development of anti-CEA immunity. We thus tested the spontaneous reactivity to the identified epitopes of peripheral blood CD4+ T lymphocytes from eight early-stage lung cancer patients bearing CEA-positive tumors. We found GM-CSF- and IFN-γ- producing CD4+ T cells in two patients. Our data indicate that CD4+ immune responses against CEA develop in neoplastic patients, suggesting that tolerance toward CEA or cross-reactive CD66 homologous molecules might be either not absolute or be overcome in the neoplastic disease.


Journal of Immunology | 2015

Signal Strength and Metabolic Requirements Control Cytokine-Induced Th17 Differentiation of Uncommitted Human T Cells

Ilko Kastirr; Mariacristina Crosti; Stefano Maglie; Moira Paroni; Bodo Steckel; Monica Moro; Massimilliano Pagani; Sergio Abrignani; Jens Geginat

IL-17 production defines Th17 cells, which orchestrate immune responses and autoimmune diseases. Human Th17 cells can be efficiently generated with appropriate cytokines from precommitted precursors, but the requirements of uncommitted T cells are still ill defined. In standard human Th17 cultures, IL-17 production was restricted to CCR6+CD45RA+ T cells, which expressed CD95 and produced IL-17 ex vivo, identifying them as Th17 memory stem cells. Uncommitted naive CD4+ T cells upregulated CCR6, RORC2, and IL-23R expression with Th17-promoting cytokines but in addition required sustained TCR stimulation, late mammalian target of rapamycin (mTOR) activity, and HIF-1α to produce IL-17. However, in standard high-density cultures, nutrients like glucose and amino acids became progressively limiting, and mTOR activity was consequently not sustained, despite ongoing TCR stimulation and T cell proliferation. Sustained, nutrient-dependent mTOR activity also induced spontaneous IL-22 and IFN-γ production, but these cytokines had also unique metabolic requirements. Thus, glucose promoted IL-12–independent Th1 differentiation, whereas aromatic amino acid–derived AHR ligands were selectively required for IL-22 production. The identification of Th17 memory stem cells and the stimulation requirements for induced human Th17/22 differentiation have important implications for T cell biology and for therapies targeting the mTOR pathway.


Stem Cells and Development | 2015

Dissection of the Cord Blood Stromal Component Reveals Predictive Parameters for Culture Outcome

Mario Barilani; Cristiana Lavazza; Mariele Viganò; Tiziana Montemurro; Valentina Boldrin; Valentina Parazzi; Elisa Montelatici; Mariacristina Crosti; Monica Moro; Rosaria Giordano; Lorenza Lazzari

In regenerative medicine, human cord blood-derived multipotent mesenchymal stromal cells (CBMSCs) stand out for their biological peculiarities demonstrated in in vitro and in vivo preclinical studies. Here, we present our 9-year experience for the consistent isolation of CBMSCs. Although nearly one CB unit out of two retains the potential to give rise to MSC colonies, only 46% of them can be cultured till low passages (P≥4), but one-fourth of those reaches even higher passages (P≥8). Subsequent characterization for morphological, clonal, differentiation, and proliferation properties revealed two divergent CBMSC behaviors. In particular, a cumulative population doublings cut-off (CPD=15) was identified that undoubtedly distinguishes two growth curves, and different degrees of commitment toward osteogenesis were observed. These data clearly show the existence of at least two distinct CBMSC subsets: one mainly short-living and less proliferative (SL-CBMSCs), the other long-living, with higher growth rate, and, very importantly, with significantly (P≤0.01) longer telomere (LL-CBMSCs). Moreover, significant differences in the immunoprofile before seeding were found among CB units giving rise to LL-CBMSCs or SL-CBMSCs or showing no colony formation. Finally, all the aforementioned results provided a peculiar and useful set of parameters potentially predictive for CBMSC culture outcome.


The International Journal of Biochemistry & Cell Biology | 2014

Diet composition transiently modulates proliferative and potency features of human cord blood-derived mesenchymal stem cells

Enrico Ragni; Valentina Parazzi; Mariacristina Crosti; Monica Moro; Rosaria Giordano; Lorenza Lazzari

Mesenchymal stem cells (MSC) emerged in the last few years as a promise in regenerative medicine and have been actively tested in several clinical trials worldwide. However, the lack of common standards and a precise definition of MSC preparations remain a major obstacle in research and application. In this study, we compared the effects during culture of two different MSC commercial media (aMEM and SPE-IV) on the proliferative capacities, phenotypic and molecular features in human cord blood derived-MSC lines. Moreover, as miRNA are markers of stem cell multipotency and regulators of somatic cell reprogramming, we performed a miRNome analysis in both conditions. As a result, we observed that SPE-IV promoted a faster growth and modulated stemness and proliferation associated genes such as PDGFRB, p16 and p21. Notably, in aMEM miR-335 and miR-302b, both proposed as putative stemness markers, were upregulated together with miRNAs reported to decrease adipo- and osteogenesis confirming the observed reduced differentiation potential after growth in this condition. Intriguingly, phenotypic divergences were entirely due to culturing conditions and, most importantly, completely transitory since, after medium switch, the cells were able to revert their signatures. Thus, it emerges as crucial keeping constant the experimental settings, starting from culturing conditions, to avoid misleading characterization of stemness and/or potency markers when the eventual goal is unequivocal definition of such parameters for future clinical choice.


Journal of Cellular Biochemistry | 2017

FGF2 and EGF Are Required for Self-Renewal and Organoid Formation of Canine Normal and Tumor Breast Stem Cells.

Cinzia Cocola; Stefano Molgora; Eleonora Piscitelli; M.C. Veronesi; Marianna Greco; Cinzia Bragato; Monica Moro; Mariacristina Crosti; Brian M. Gray; Luciano Milanesi; V. Grieco; Gc Luvoni; James Kehler; Gianfranco Bellipanni; Rolland Reinbold; Ileana Zucchi; Antonio Giordano

Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self‐renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi‐lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self‐renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570–584, 2017.


Cellular and Molecular Life Sciences | 2016

Protein O-mannosylation is crucial for human mesencyhmal stem cells fate.

Enrico Ragni; M. Lommel; Monica Moro; Mariacristina Crosti; Cristiana Lavazza; Valentina Parazzi; Simona Saredi; Sabine Strahl; Lorenza Lazzari

Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.


Proteomics | 2015

Reference proteome of highly purified human Th1 cells reveals strong effects on metabolism and protein ubiquitination upon differentiation.

Massimiliano Pagani; Maxie Rockstroh; Maj Schuster; Grazisa Rossetti; Monica Moro; Mariacristina Crosti; Janina M. Tomm

The differentiation of human CD4+ T cells into T helper cell subtypes and regulatory T cells is crucial to the immune response. Among subtypes, Th1 cells are dominant, representing approximately 50% of all lymphocytes. Thus far, most global proteomic studies have used only partially purified T helper cell subpopulations and/or have employed artificial protocols for inducing specific T helper cell subtypes and/or used gel‐based approaches. These studies have shed light on molecular details of certain aspects of the proteome; nevertheless a global analysis of high purity primary naïve and Th1 cells by LC‐MS/MS is required to provide a reference dataset for proteome‐based T cell subtype characterization. The utilization of highly purified Th1 cells for a global proteome assessment and the bioinformatic comparison to naïve cells reveals changes in cell metabolism and the ubiquitination pathway upon T cell differentiation. All MS data have been deposited in the ProteomeXchange with identifier PXD001066 (http://proteomecentral.proteomexchange.org/dataset/PXD001066).


Journal of Cellular Biochemistry | 2016

FGF2 and EGF is required for self-renewal of canine normal and tumor breast stem/progenitor cells that have organoid formation potential

Cinzia Cocola; Stefano Molgora; M.C. Veronesi; Marianna Greco; Cinzia Bragato; Monica Moro; Mariacristina Crosti; Brian M. Gray; Luciano Milanesi; Grieco; Gc Luvoni; James Kehler; Gianfranco Bellipanni; Rolland Reinbold; Ileana Zucchi; Antonio Giordano

Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self‐renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi‐lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self‐renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570–584, 2017.

Collaboration


Dive into the Mariacristina Crosti's collaboration.

Top Co-Authors

Avatar

Monica Moro

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenza Lazzari

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Valentina Parazzi

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Cinzia Bragato

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Cristiana Lavazza

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Enrico Ragni

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Consogno

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge