Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariagiovanna Cantone is active.

Publication


Featured researches published by Mariagiovanna Cantone.


Journal of Neural Transmission | 2011

Transcranial magnetic stimulation in Alzheimer’s disease: a neurophysiological marker of cortical hyperexcitability

Giovanni Pennisi; Raffaele Ferri; Giuseppe Lanza; Mariagiovanna Cantone; Manuela Pennisi; Valentina Puglisi; Giulia Malaguarnera; Rita Bella

Recently, neuropathological studies have shown an important motor cortex involvement in Alzheimer’s disease (AD), even in its early stages, despite the lack of clinically evident motor deficit. Transcranial magnetic stimulation (TMS) studies have demonstrated that cortical excitability is enhanced in AD patients. This cortical hyperexcitability is believed to be a compensatory mechanism to execute voluntary movements, despite the progressive impairment of associative cortical areas. At present, it is not clear if these motor cortex excitability changes might be the expression of an involvement of intracortical excitatory glutamatergic circuits or an impairment of inhibitory cholinergic and, to a lesser extent, gabaergic activity. Although the main hypothesis for the pathogenesis of AD remains the degeneration of the basal forebrain cholinergic neurons, the development of specific TMS protocols, such as the paired-pulse TMS and the study of the short-latency afferent inhibition, points out the role of other neurotransmitters, such as gamma-amino-butyric acid, glutamate and dopamine. The potential therapeutic effect of repetitive TMS in restoring or compensating damaged cognitive functions, might become a possible rehabilitation tool in AD patients. Based on different patterns of cortical excitability, TMS may be useful in discriminating between physiological brain aging, mild cognitive impairment, AD and other dementing disorders. The present review provides a perspective of these TMS techniques by further understanding the role of different neurotransmission pathways and plastic remodelling of neuronal networks in the pathogenesis of AD.


Dementia and Geriatric Cognitive Disorders | 2011

A Review of Transcranial Magnetic Stimulation in Vascular Dementia

Giovanni Pennisi; Raffaele Ferri; Mariagiovanna Cantone; Giuseppe Lanza; Manuela Pennisi; Luisa Vinciguerra; Giulia Malaguarnera; Rita Bella

Vascular dementia (VaD) is a clinical syndrome that encompasses a wide spectrum of cognitive disorders caused by cerebrovascular disease. The subcortical ischemic form of VaD is clinically homogeneous and a major cause of cognitive impairment in the elderly. Vascular lesions contribute to cognitive decline in neurodegenerative dementias, and VaD and Alzheimer’s disease often coexist and share clinical features and multiple neurotransmission involvement. These similarities have led several investigators to use transcranial magnetic stimulation (TMS) to enucleate a neurophysiological profile of VaD. TMS studies have identified a pattern of cortical hyperexcitability probably related to the disruption of the integrity of white matter lesions due to cerebrovascular disease. The present review provides a perspective of these TMS techniques by further understanding the role of different neurotransmission pathways and plastic remodeling of neuronal networks in the pathogenesis of VaD.


Neuroscience Letters | 2011

Enhanced motor cortex facilitation in patients with vascular cognitive impairment-no dementia.

Rita Bella; Raffaele Ferri; Manuela Pennisi; Mariagiovanna Cantone; Giuseppe Lanza; Giulia Malaguarnera; Concetto Spampinato; Daniela Giordano; Giovanna Alagona; Giovanni Pennisi

Data on Transcranial Magnetic Stimulation (TMS) derived measures of cortical excitability and intracortical circuits in age-related white matter changes are scarce. We aimed to assess early changes of motor cortex excitability in nondemented elderly patients with subcortical ischemic vascular disease (SVD). Ten SVD elderly and ten age-matched controls underwent paired-pulse TMS for the analysis of intracortical inhibition (ICI) and facilitation (ICF). All subjects performed neuropsychological assessment and brain magnetic resonance imaging. SVD patients showed abnormal executive control function. No statistically significant differences were found for resting motor threshold, cortical silent period between SVD patients and controls or between the two hemispheres, in patients. A significant enhancement of mean ICF was observed in SVD patients. This study provides the first evidence of functional changes in intracortical excitatory neuronal circuits in patients with SVD and clinical features of vascular cognitive impairment-no dementia. Further studies are required to evaluate whether the observed change of ICF might predict cognitive and/or motor impairment in a population at risk for subcortical vascular dementia.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2013

Transcranial Magnetic Stimulation in the Assessment of Motor Cortex Excitability and Treatment of Drug-Resistant Major Depression

Concetto Spampinato; E. Aguglia; C. Concerto; Manuela Pennisi; Giuseppe Lanza; Rita Bella; Mariagiovanna Cantone; Giovanni Pennisi; Isaak Kavasidis; Daniela Giordano

Major depression is one of the leading causes of disabling condition worldwide and its treatment is often challenging and unsatisfactory, since many patients become refractory to pharmacological therapies. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological investigation mainly used to study the integrity of the primary motor cortex excitability and of the cortico-spinal tract. The development of paired-pulse and repetitive TMS (rTMS) paradigms has allowed investigators to explore the pathophysiology of depressive disorders and other neuropsychiatric diseases linked to brain excitability dysfunctions. Repetitive transcranial magnetic stimulation has also therapeutic and rehabilitative capabilities since it is able to induce changes in the excitability of inhibitory and excitatory neuronal networks that may persist in time. However, the therapeutic effects of rTMS on major depression have been demonstrated by analyzing only the improvement of neuropsychological performance. The aim of this study was to investigate cortical excitability changes on 12 chronically-medicated depressed patients (test group) after rTMS treatment and to correlate neurophysiological findings to neuropsychological outcomes. In detail, we assessed different parameters of cortical excitability before and after active rTMS in the test group, then compared to those of 10 age-matched depressed patients (control group) who underwent sham rTMS. In line with previous studies, at baseline both groups exhibited a significant interhemispheric difference of motor cortex excitability. This neurophysiological imbalance was then reduced in the patients treated with active rTMS, resulting also in a clinical benefit as demonstrated by the improvement in neuropsychological test scores. On the contrary, after sham rTMS, the interhemispheric difference was still evident in the control group. The reported clinical benefits in the test group might be related to the plastic remodeling of synaptic connection induced by rTMS treatment.


International Journal of Psychiatry in Clinical Practice | 2015

Repetitive transcranial magnetic stimulation in patients with drug-resistant major depression: A six-month clinical follow-up study.

Carmen Concerto; Giuseppe Lanza; Mariagiovanna Cantone; Raffaele Ferri; Giovanni Pennisi; Rita Bella; Eugenio Aguglia

Objective. In this study we aimed to assess the long-term efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) on depressive symptoms and cognitive performance in patients with drug-resistant major depressive disorder (MDD). Methods. Fifteen drug-resistant depressed outpatients completed an acute trial with augmentative high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) and were compared with 15 drug-resistant MDD patients who underwent sham procedure. Depressive symptoms were evaluated with the Hamilton Depression Rating Scale and Montgomery–Asberg Depression Rating Scale. The Frontal Assessment Battery and the Stroop Color–Word Test Interference (Stroop T) were used to probe executive functions. Outcome measures were obtained at baseline, 4 weeks after the rTMS, as well as 3 months and 6 months after the end of the stimulation protocol. Results. After the active rTMS, patients showed a significant decrease in the scores at the depression rating scales that lasted for 6 months. A transient improvement was also observed at the Stroop T, although it did not persist in time. Conclusions. High-frequency rTMS over the left DLPFC may have long-term antidepressant effect in drug-resistant MDD. TMS is a valuable tool for the add-on treatment of mood disorders and for the design of customized stimulation protocols.


Sleep Medicine | 2015

Direct comparison of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome and restless legs syndrome.

Giuseppe Lanza; Bartolo Lanuzza; Debora Aricò; Mariagiovanna Cantone; Filomena I.I. Cosentino; Manuela Pennisi; Rita Bella; Giovanni Pennisi; Raffaele Ferri

OBJECTIVE Changes to transcranial magnetic stimulation (TMS) have been reported in obstructive sleep apnea syndrome (OSAS) and restless legs syndrome (RLS), although no direct comparison study is available. The aim of this new investigation is to assess and compare cortical excitability of OSAS and RLS patients using the same methodology and under the same experimental conditions. METHODS Fourteen patients with OSAS and 12 with RLS were compared to 14 age-matched controls. All patients were untreated and had a severe degree of disease. Resting motor threshold (rMT), cortical silent period (CSP) and motor evoked potentials MEPs, as well as intracortical inhibition (ICI) and facilitation at interstimulus interval (ISI) of 3 and 10 ms, respectively, were explored from the right first dorsal interosseous muscle, during wakefulness. RESULTS rMT was higher in OSAS than in RLS and controls. CSP was shorter in RLS only when compared to apneic patients, whereas it was similar between OSAS and controls. OSAS subjects exhibited slightly prolonged central motor conductivity, whereas MEP amplitude was smaller in both patient groups. The ICI ratio at ISI of 3 ms was decreased in RLS patients only. CONCLUSIONS Distinct changes of responses at TMS were found, probably connected with the different neurophysiological substrates underlying OSAS and RLS and could not be interpreted as a mere reflection of the effects of sleep architecture alteration. TMS can be considered an additional tool for the understanding of clinical and pathophysiological aspects of sleep disorders, and possibly for the evaluation of the effect of therapy.


BMC Psychiatry | 2013

Different patterns of cortical excitability in major depression and vascular depression: a transcranial magnetic stimulation study

Carmen Concerto; Giuseppe Lanza; Mariagiovanna Cantone; Manuela Pennisi; Daniela Giordano; Concetto Spampinato; Riccardo Ricceri; Giovanni Pennisi; Eugenio Aguglia; Rita Bella

BackgroundClinical and functional studies consider major depression (MD) and vascular depression (VD) as different neurobiological processes. Hypoexcitability of the left frontal cortex to transcranial magnetic stimulation (TMS) is frequently reported in MD, whereas little is known about the effects of TMS in VD. Thus, we aimed to assess and compare motor cortex excitability in patients with VD and MD.MethodsEleven VD patients, 11 recurrent drug-resistant MD patients, and 11 healthy controls underwent clinical, neuropsychological and neuroimaging evaluations in addition to bilateral resting motor threshold, cortical silent period, and paired-pulse TMS curves of intracortical excitability. All patients continued on psychotropic drugs, which were unchanged throughout the study.ResultsScores on one of the tests evaluating frontal lobe abilities (Stroop Color-Word interference test) were worse in patients compared with controls. The resting motor threshold in patients with MD was significantly higher in the left hemisphere compared with the right (p < 0.05), and compared with the VD patients and controls. The cortical silent period was bilaterally prolonged in MD patients compared with VD patients and controls, with a statistically significant difference in the left hemisphere (p < 0.01). No differences were observed in the paired-pulse curves between patients and controls.ConclusionsThis study showed distinctive patterns of motor cortex excitability between late-onset depression with subcortical vascular disease and early-onset recurrent drug resistant MD. The data provide a TMS model of the different processes underlying VD and MD. Additionally, our results support the “Vascular depression hypothesis” at the neurophysiological level, and confirm the inter-hemispheric asymmetry to TMS in patients with MD. We were unable to support previous findings of impaired intracortical inhibitory mechanisms to TMS in patients with MD, although a drug-induced effect on our results cannot be excluded. This study may aid the understanding of the pathogenetic differences underlying the clinical spectrum of depressive disorders.


Neural Plasticity | 2016

Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study

Manuela Pennisi; Giuseppe Lanza; Mariagiovanna Cantone; Riccardo Ricceri; Concetto Spampinato; Giovanni Pennisi; Vincenzo Di Lazzaro; Rita Bella

Background. Transcranial magnetic stimulation (TMS) highlighted functional changes in dementia, whereas there are few data in patients with vascular cognitive impairment-no dementia (VCI-ND). Similarly, little is known about the neurophysiological impact of vascular depression (VD) on deterioration of cognitive functions. We test whether depression might affect not only cognition but also specific cortical circuits in subcortical vascular disease. Methods. Sixteen VCI-ND and 11 VD patients, age-matched with 15 controls, underwent a clinical-cognitive, neuroimaging, and TMS assessment. After approximately two years, all participants were prospectively reevaluated. Results. At baseline, a significant more pronounced intracortical facilitation (ICF) was found in VCI-ND patients. Reevaluation revealed an increase of the global excitability in both VCI-ND and VD subjects. At follow-up, the ICF of VCI-ND becomes similar to the other groups. Only VD patients showed cognitive deterioration. Conclusions. Unlike VD, the hyperfacilitation found at baseline in VCI-ND patients suggests enhanced glutamatergic neurotransmission that might contribute to the preservation of cognitive functioning. The hyperexcitability observed at follow-up in both groups of patients also indicates functional changes in glutamatergic neurotransmission. The mechanisms enhancing the risk of dementia in VD might be related either to subcortical vascular lesions or to the lack of compensatory functional cortical changes.


Behavioural Neurology | 2017

Vascular Cognitive Impairment through the Looking Glass of Transcranial Magnetic Stimulation

Giuseppe Lanza; Placido Bramanti; Mariagiovanna Cantone; Manuela Pennisi; Giovanni Pennisi; Rita Bella

In the last years, there has been a significant growth in the literature exploiting transcranial magnetic stimulation (TMS) with the aim at gaining further insights into the electrophysiological and neurochemical basis underlying vascular cognitive impairment (VCI). Overall, TMS points at enhanced brain cortical excitability and synaptic plasticity in VCI, especially in patients with overt dementia, and neurophysiological changes seem to correlate with disease process and progress. These findings have been interpreted as part of a glutamate-mediated compensatory effect in response to vascular lesions. Although a single TMS parameter owns low specificity, a panel of measures can support the VCI diagnosis, predict progression, and possibly identify early markers of “brain at risk” for future dementia, thus making VCI a potentially preventable cause of both vascular and degenerative dementia in late life. Moreover, TMS can be also exploited to select and evaluate the responders to specific drugs, as well as to become an innovative rehabilitative tool in the attempt to restore impaired neural plasticity. The present review provides a perspective of the different TMS techniques by further understanding the cortical electrophysiology and the role of distinctive neurotransmission pathways and networks involved in the pathogenesis and pathophysiology of VCI and its subtypes.


PLOS ONE | 2014

Excitability of the motor cortex in de novo patients with celiac disease

Giovanni Pennisi; Giuseppe Lanza; Salvatore Giuffrida; Luisa Vinciguerra; Valentina Puglisi; Mariagiovanna Cantone; Manuela Pennisi; Carmela Cinzia D'Agate; Pietro Naso; Giuseppe Aprile; Giulia Malaguarnera; Raffaele Ferri; Rita Bella

Introduction Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking. Objective To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients. Materials and methods Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons. Results CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohens d -0.414), ICI (-0.278) and ICF (-0.292) measurements. Conclusion A pattern of cortical excitability characterized by “disinhibition” and “hyperfacilitation” was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.

Collaboration


Dive into the Mariagiovanna Cantone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge