Marian Gindy
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marian Gindy.
Expert Opinion on Drug Delivery | 2009
Marian Gindy; Robert K. Prud'homme
The application of nanoparticles for the delivery and targeting of pharmaceutical, therapeutic and diagnostic agents in cancer therapy has received significant attention in recent years. Nanoparticles may be constructed from a wide range of materials and used to encapsulate or solubilize chemotherapeutic agents for improved delivery in vivo or to provide unique optical, magnetic and electrical properties for imaging and therapy. Several functional nanoparticles have already been demonstrated, including some clinically approved liposome drug formulations and metallic imaging agents. The next generation of nanoparticle-based research is directed at the consolidation of functions into strategically engineered multifunctional systems, which may ultimately facilitate the realization of individual therapy. These multiplexed nanoparticles may be capable of identifying malignant cells by means of molecular detection, visualizing their location in the body by providing enhanced contrast in medical imaging techniques, killing diseased cells with minimal side effects through selective drug targeting, and monitoring treatment in real time. This article highlights recent progress in the design and engineering of multifunctional systems, as well as discusses the development of a new, scalable and economic method for the modular preparation of multiplex nanoparticles where functional properties can be precisely and simply tailored.
Biomacromolecules | 2008
Marian Gindy; Shengxiang Ji; Thomas R. Hoye; Athanassios Z. Panagiotopoulos; Robert K. Prud'homme
Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
Advanced Healthcare Materials | 2015
Nathalie M. Pinkerton; Marian Gindy; Victoria L. Calero-DdelC; Theodore Wolfson; Robert F. Pagels; Derek Adler; Dayuan Gao; Shike Li; Ruobing Wang; Margot Zevon; Nan Yao; Carlos Pacheco; Michael J. Therien; Carlos Rinaldi; Patrick J. Sinko; Robert K. Prud'homme
Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.
Expert Review of Clinical Pharmacology | 2009
Mustafa Akbulut; Suzanne M. D’Addio; Marian Gindy; Robert K. Prud’homme
Nanomaterials have been demonstrated as useful tools for molecular imaging, molecular diagnosis and targeted therapy in biomedical research. The main advantages of such nanomaterials are improved circulation times, precise targeting, enhancement of dissolution rates and enhanced contrast. A challenge and opportunity for nanotechnological strategies is that multiple functionalities, such as therapeutics, targeting, imaging and stimuli responsiveness can be achieved within one nanoparticle. Multifunctional nanoparticles are now actively under investigation and are imminent as the next generation of nanoparticles for providing custom and tailored treatment. This review considers contemporary approaches and possible future directions in the emerging area of multifunctional nanoparticles with a special focus on targeted drug delivery.
Journal of Chemical Physics | 2008
Marian Gindy; Robert K. Prud’homme; Athanassios Z. Panagiotopoulos
The solution phase behavior of short, strictly alternating multiblock copolymers of type (A(n)B(n))(m) was studied using lattice Monte Carlo simulations. The polymer molecules were modeled as flexible chains in a monomeric solvent selective for block type A. The degree of block polymerization n and the number of diblock units per chain m were treated as variables. We show that within the regime of parameters accessible to our study, the thermodynamic phase transition type is dependent on the ratio of m / n. The simulations show microscopic phase separation into roughly spherical aggregates for m / n ratios less than a critical value and first-order macroscopic precipitation otherwise. In general, increasing m at fixed n, or n at fixed m, promotes the tendency toward macroscopic phase precipitation. The enthalpic driving force of phase change is found to universally scale with chain length for all multiblock systems considered and is independent of the existence of a true phase transition. For aggregate forming systems at low amphiphile concentrations, multiblock chains are shown to self-assemble into intramolecular, multichain clusters. Predictions for microstructural dimensions, including critical micelle concentration, equilibrium size, shape, aggregation parameters, and density distributions, are provided. At increasing amphiphile density, interaggregate bridging is shown to result in the formation of networked structures, leading to an eventual solution-gel transition. The gel is swollen and consists of highly interconnected aggregates of approximately spherical morphology. Qualitative agreement is found between experimentally observed physical property changes and phase transitions predicted by simulations. Thus, a potential application of the simulations is the design of multiblock copolymer systems which can be optimized with regard to solution phase behavior and ultimately physical and mechanical properties.
Molecular Pharmaceutics | 2014
Yan Xu; Mei Ou; Ed Keough; Jeff Roberts; Ken Koeplinger; Mike Lyman; Scott E. Fauty; Ed Carlini; Melissa Stern; Rena Zhang; Suzie Yeh; Elizabeth Mahan; Yi Wang; Don Slaughter; Marian Gindy; Conrad E. Raab; Charles D. Thompson; Jerome H. Hochman
Effective delivery of small interfering RNA (siRNA) requires efficient cellular uptake and release into cytosol where it forms an active complex with RNAi induced silencing complex (RISC). Despite rapid developments in RNAi therapeutics, improvements in delivery efficiency of siRNA are needed to realize the full potential of this modality in broad therapeutic applications. We evaluated potential physiological and biochemical barrier(s) to the effective liver delivery of siRNA formulated in lipid nanoparticle (LNP) delivery vehicles. The comparative siRNA delivery performance of three LNPs was investigated in rats. They were assembled with either C14- or C18-anchored PEG-lipid(s), cationic lipid(s), and various helper lipid(s) and contained the same siRNA duplex. These LNPs demonstrated differentiated potency with ED50s ranging from 0.02 to 0.25 mg/kg. The two C14-PEG-LNPs had comparable siRNA exposure in plasma and liver, while the C18-PEG-LNP demonstrated a higher plasma siRNA exposure and a slower but sustained liver uptake. RISC bound siRNA within the liver, a more proximal measure of the pharmacologically active siRNA species, displayed loading kinetics that paralleled the target mRNA knockdown profile, with greater RISC loading associated with more potent LNPs. Liver perfusion and hepatocyte isolation experiments were performed following treatment of rats with LNPs containing VivoTag-fluorescently labeled siRNA. One hour after dosing a majority of the siRNA within the liver was associated with hepatocytes and was internalized (within small subcellular vesicles) with no significant cell surface association, indicating good liver tissue penetration, hepatocellular distribution, and internalization. Comparison of siRNA amounts in hepatocytes and subcellular fractions of the three LNPs suggests that endosomal escape is a significant barrier to siRNA delivery where cationic lipid seems to have a great impact. Quantitation of Ago-2 associated siRNA revealed that after endosomal escape further loss of siRNA occurs prior to RISC loading. This quantitative assessment of LNP-mediated siRNA delivery has highlighted potential barriers with respect to endosomal escape and incomplete RISC loading for delivery optimization efforts.
Molecular therapy. Nucleic acids | 2015
Zhu Chen; Bin Luo; Tian-Quan Cai; Anil Thankappan; Yiming Xu; Weizhen Wu; Jillian DiMuzio; Traci Q. Lifsted; Marty DiPietro; Jyoti Disa; Bruce Ng; Karen R. Leander; Seth Clark; Lizbeth Hoos; Yuchen Zhou; Nina Jochnowitz; Christine Jachec; Peter Szczerba; Marian Gindy; Walter Strapps; Laura Sepp-Lorenzino; Dietmar Seiffert; Laura S. Lubbers; Marija Tadin-Strapps
The present study aimed at establishing feasibility of delivering short interfering RNA (siRNA) to target the coagulation cascade in rat and rabbit, two commonly used species for studying thrombosis and hemostasis. siRNAs that produced over 90% mRNA knockdown of rat plasma prekallikrein and rabbit Factor X (FX) were identified from in vitro screens. An ionizable amino lipid based lipid nanoparticle (LNP) formulation for siRNA in vivo delivery was characterized as tolerable and exerting no appreciable effect on coagulability at day 7 postdosing in both species. Both prekallikrein siRNA-LNP and FX siRNA-LNP resulted in dose-dependent and selective knockdown of target gene mRNA in the liver with maximum reduction of over 90% on day 7 following a single dose of siRNA-LNP. Knockdown of plasma prekallikrein was associated with modest clot weight reduction in the rat arteriovenous shunt thrombosis model and no increase in the cuticle bleeding time. Knockdown of FX in the rabbit was accompanied with prolongation in ex vivo clotting times. Results fit the expectations with both targets and demonstrate for the first time, the feasibility of targeting coagulation factors in rat, and, more broadly, targeting a gene of interest in rabbit, via systemic delivery of ionizable LNP formulated siRNA.
Langmuir | 2014
Marian Gindy; DiFelice K; Kumar; Robert K. Prud'homme; Celano R; Haas Rm; Smith Js; Boardman D
Lipid nanoparticles (LNPs) are a leading platform for therapeutic delivery of small interfering RNAs (siRNAs). Optimization of LNPs as therapeutic products is enabled by the development of structure-activity relationships (SAR) linking LNP physiochemical and macromolecular properties to bioperformance. Methods by which LNP properties can be rationally manipulated are thus critical enablers of this fundamental knowledge build. In this work, we present a mechanistic study of LNP self-assembly via a rapid antisolvent precipitation process and identify critical physiochemical and kinetic parameters governing the evolution of LNP three-dimensional macromolecular structure as a biorelevant SAR feature. Using small-angle X-ray scattering, LNPs are shown to undergo a temporal evolution in macromolecular structure during self-assembly, rearranging from initially disordered phases after precipitation into well-ordered structures following a necessary annealing stage of the assembly sequence. The ability of LNPs to undergo structural reorganization is shown to be effected by the chemical nature of the aqueous antisolvent used for precipitation. Antisolvents of varying buffering species differentially influence LNP macromolecular features, revealing a new participatory role of buffer ions in LNP self-assembly. Furthermore, the formation of macromolecular structure in LNPs is shown to improve the efficiency of siRNA encapsulation, thereby offering a simple, nonchemical route for preparation of high-payload LNPs that minimize the dose of lipid excipients. The developed LNP precipitation process and mechanistic understanding of self-assembly are shown to be generalizable, enabling the production of LNPs with a tunable range of macromolecular features, as evidenced by the cubic, hexagonal, and oligo-lamellar phase LNPs exemplarily generated.
Vaccine | 2016
Gokul Swaminathan; Elizabeth Thoryk; Kara S. Cox; Steven Meschino; Sheri A. Dubey; Kalpit A. Vora; Robert Celano; Marian Gindy; Danilo R. Casimiro; Andrew J. Bett
Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4(+) and CD8(+)T cell responses. Intracellular FACS analyses revealed that LNP and LNP+IMO formulated antigens led to higher frequency of antigen-specific IFNγ(+)TNFα(+)IL-2(+), multi-functional CD8(+)T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses.
Journal of Pharmaceutical Sciences | 2016
Suzanne M. Daddio; Jameson R. Bothe; Claudia Neri; Paul Walsh; Jingtao Zhang; Elizabeth E. Pierson; Yun Mao; Marian Gindy; Anthony Leone; Allen C. Templeton
Advances in technologies related to the design and manufacture of therapeutic peptides have enabled researchers to overcome the biological and technological challenges that have limited their application in the past. As a result, peptides of increasing complexity have become progressively important against a variety of disease targets. Developing peptide drug products brings with it unique scientific challenges consistent with the unique physicochemical properties of peptide molecules. The identification of the proper characterization tools is required in order to develop peptide formulations with the appropriate stability, manufacturability, and bioperformance characteristics. This knowledge supports the build of critical quality attributes and, ultimately, regulatory specifications. The purpose of this review article is to provide an overview of the techniques that are employed for analytical characterization of peptide drug products. The techniques covered are highlighted in the context of peptide drug product understanding and include chemical and biophysical approaches. Emphasis is placed on summarizing the recent literature experience in the field. Finally, the authors provide regulatory perspective on these characterization approaches and discuss some potential areas for further research in the field.