Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marian Grade is active.

Publication


Featured researches published by Marian Grade.


Journal of Clinical Oncology | 2005

Effectiveness of Gene Expression Profiling for Response Prediction of Rectal Adenocarcinomas to Preoperative Chemoradiotherapy

B. Michael Ghadimi; Marian Grade; Michael J. Difilippantonio; Sudhir Varma; Richard Simon; Cristina Montagna; L. Füzesi; C. Langer; Heinz Becker; Torsten Liersch; Thomas Ried

PURPOSE There is a wide spectrum of tumor responsiveness of rectal adenocarcinomas to preoperative chemoradiotherapy ranging from complete response to complete resistance. This study aimed to investigate whether parallel gene expression profiling of the primary tumor can contribute to stratification of patients into groups of responders or nonresponders. PATIENTS AND METHODS Pretherapeutic biopsies from 30 locally advanced rectal carcinomas were analyzed for gene expression signatures using microarrays. All patients were participants of a phase III clinical trial (CAO/ARO/AIO-94, German Rectal Cancer Trial) and were randomized to receive a preoperative combined-modality therapy including fluorouracil and radiation. Class comparison was used to identify a set of genes that were differentially expressed between responders and nonresponders as measured by T level downsizing and histopathologic tumor regression grading. RESULTS In an initial set of 23 patients, responders and nonresponders showed significantly different expression levels for 54 genes (P < .001). The ability to predict response to therapy using gene expression profiles was rigorously evaluated using leave-one-out cross-validation. Tumor behavior was correctly predicted in 83% of patients (P = .02). Sensitivity (correct prediction of response) was 78%, and specificity (correct prediction of nonresponse) was 86%, with a positive and negative predictive value of 78% and 86%, respectively. CONCLUSION Our results suggest that pretherapeutic gene expression profiling may assist in response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. The implementation of gene expression profiles for treatment stratification and clinical management of cancer patients requires validation in large, independent studies, which are now warranted.


Cancer Research | 2007

Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas.

Marian Grade; Patrick Hörmann; Sandra Becker; Amanda B. Hummon; Danny Wangsa; Sudhir Varma; Richard Simon; Torsten Liersch; Heinz Becker; Michael J. Difilippantonio; B. Michael Ghadimi; Thomas Ried

To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P < 1e-7). A significant proportion of these genes mapped to chromosome 20 (P = 0.01). Seventeen genes had a >5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node-negative and lymph node-positive tumors (P < 0.001), the functional annotation of which revealed a preponderance of genes that play a role in cellular immune response and surveillance. The microarray-derived gene expression levels of 20 deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/beta-catenin signaling cascade, suggesting similar pathogenic pathways.


Clinical Cancer Research | 2012

The Rectal Cancer microRNAome – microRNA Expression in Rectal Cancer and Matched Normal Mucosa

Jochen Gaedcke; Marian Grade; Jordi Camps; Rolf Søkilde; Bogumil Kaczkowski; Aaron J. Schetter; Michael J. Difilippantonio; Curtis C. Harris; B. Michael Ghadimi; Søren Møller; Tim Beissbarth; Thomas Ried; Thomas Litman

Purpose: miRNAs play a prominent role in a variety of physiologic and pathologic biologic processes, including cancer. For rectal cancers, only limited data are available on miRNA expression profiles, whereas the underlying genomic and transcriptomic aberrations have been firmly established. We therefore, aimed to comprehensively map the miRNA expression patterns of this disease. Experimental Design: Tumor biopsies and corresponding matched mucosa samples were prospectively collected from 57 patients with locally advanced rectal cancers. Total RNA was extracted, and tumor and mucosa miRNA expression profiles were subsequently established for all patients. The expression of selected miRNAs was validated using semi-quantitative real-time PCR. Results: Forty-nine miRNAs were significantly differentially expressed (log2-fold difference >0.5 and P < 0.001) between rectal cancer and normal rectal mucosa. The predicted targets for these miRNAs were enriched for the following pathways: Wnt, TGF-beta, mTOR, insulin, mitogen-activated protein kinase, and ErbB signaling. Thirteen of these 49 miRNAs seem to be rectal cancer-specific, and have not been previously reported for colon cancers: miR-492, miR-542-5p, miR-584, miR-483-5p, miR-144, miR-2110, miR-652, miR-375, miR-147b, miR-148a, miR-190, miR-26a/b, and miR-338-3p. Of clinical impact, miR-135b expression correlated significantly with disease-free and cancer-specific survival in an independent multicenter cohort of 116 patients. Conclusion: This comprehensive analysis of the rectal cancer miRNAome uncovered novel miRNAs and pathways associated with rectal cancer. This information contributes to a detailed view of this disease. Moreover, the identification and validation of miR-135b may help to identify novel molecular targets and pathways for therapeutic exploitation. Clin Cancer Res; 18(18); 4919–30. ©2012 AACR.


Langenbeck's Archives of Surgery | 2010

The mesopancreas is the primary site for R1 resection in pancreatic head cancer: relevance for clinical trials.

Jochen Gaedcke; Bastian Gunawan; Marian Grade; R. Szöke; Torsten Liersch; Heinz Becker; B.M. Ghadimi

PurposeThe prognosis of patients with pancreatic cancer remains poor, even after potentially curative R0 resection. This discrepancy may be due to the histopathological misclassification of R1 cases as curative resections (R0) in the past.Materials and methodsTo test this hypothesis, color coding of all resection margins and organ surfaces as part of a standardized histopathological workup was implemented and prospectively tested on 100 pancreatic head specimens.ResultsThirty-five patients were excluded from the analysis owing to the pathohistological diagnosis; only pancreatic ductal adenocarcinoma, distal bile duct adenocarcinoma, and periampullary adenocarcinoma were included. Applying the International Union Against Cancer criteria, 32 cancer resections were classified R0 (49.2%), while 33 cases turned out to be R1 resections (50.8%). The mesopancreas was infiltrated in 22 of the 33 R1 resection specimens (66.6%). It proved to be the only site of tumor infiltration in 17 specimens (51.5%). Applying the Royal College of Pathologists’ criteria, 46 resections were classified R1 (70.8%). As expected, the mesopancreas again was the most frequent site of noncurative resection (n = 27; 58.7%).ConclusionUsing the intensified histopathological workup for pancreatic head cancer specimens resulted in an increased rate of R1 resections and the mesopancreas represents the primary site for positive resection margins. Such results are of relevance for patients’ stratification in clinical trials.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities

Katherine S. Garman; Chaitanya R. Acharya; Elena J. Edelman; Marian Grade; Jochen Gaedcke; Shivani Sud; William T. Barry; Anna Mae Diehl; Dawn Provenzale; Geoffrey S. Ginsburg; B. Michael Ghadimi; Thomas Ried; Joseph R. Nevins; Sayan Mukherjee; David S. Hsu; Anil Potti

Gene expression profiles provide an opportunity to dissect the heterogeneity of solid tumors, including colon cancer, to improve prognosis and predict response to therapies. Bayesian binary regression methods were used to generate a signature of disease recurrence in patients with resected early stage colon cancer validated in an independent cohort. A 50-gene signature was developed that effectively distinguished early stage colon cancer patients with a low or high risk of disease recurrence. RT-PCR analysis of the 50-gene signature validated 9 of the top 10 differentially expressed genes. When applied to two independent validation cohorts of 55 and 73 patients, the 50-gene model accurately predicted recurrence. Standard Kaplan–Meier survival analysis confirmed the prognostic accuracy (P < 0.01, log rank), as did multivariate Cox proportional hazard models. We tested potential targeted therapeutic options for patients at high risk for disease recurrence and found a clinically important relationship between sensitivity to celecoxib, LY-294002 (PI3kinase inhibitor), retinol, and sulindac in colon cancer cell lines expressing the poor prognostic phenotype (P < 0.01, t test), which performed better than standard chemotherapy (5-FU and oxaliplatin). We present a genomic strategy in early stage colon cancer to identify patients at highest risk of recurrence. An ability to move beyond current staging by refining the estimation of prognosis in early stage colon cancer also has implications for individualized therapy.


Genes, Chromosomes and Cancer | 2010

Mutated KRAS results in overexpression of DUSP4, a MAP‐kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas

Jochen Gaedcke; Marian Grade; Klaus Jung; Jordi Camps; Peter Jo; Georg Emons; Anastasia Gehoff; Ulrich Sax; Markus Schirmer; Heinz Becker; Tim Beissbarth; Thomas Ried; B. Michael Ghadimi

Mutations of the KRAS oncogene are predictive for resistance to treatment with antibodies against the epithelial growth factor receptor in patients with colorectal cancer. Overcoming this therapeutic dilemma could potentially be achieved by the introduction of drugs that inhibit signaling pathways that are activated by KRAS mutations. To identify comprehensively such signaling pathways, we profiled pretreatment biopsies and normal mucosa from 65 patients with locally advanced rectal cancer—30 of which carried mutated KRAS—using global gene expression microarrays. By comparing all tumor tissues exclusively to matched normal mucosa, we could improve assay sensitivity, and identified a total of 22,297 features that were differentially expressed (adjusted P‐value <0.05) between normal mucosa and cancer, including several novel potential rectal cancer genes. We then used this comprehensive description of the rectal cancer transcriptome as the baseline for identifying KRAS‐dependent alterations. The presence of activating KRAS mutations is significantly correlated to an upregulation of 13 genes (adjusted P‐value <0.05), among them DUSP4, a MAP‐kinase phosphatase, and SMYD3, a histone methyltransferase. Inhibition of the expression of both genes has previously been shown using the MEK1‐inhibitor PD98059 and the antibacterial compound Novobiocin, respectively. These findings suggest a potential approach to overcome resistance to treatment with antibodies against the epithelial growth factor receptor in patients with KRAS‐mutant rectal carcinomas.


Cancer Research | 2008

Chromosomal Breakpoints in Primary Colon Cancer Cluster at Sites of Structural Variants in the Genome

Jordi Camps; Marian Grade; Quang Tri Nguyen; Patrick Hörmann; Sandra Becker; Amanda B. Hummon; Virginia Rodriguez; Settara C. Chandrasekharappa; Yidong Chen; Michael J. Difilippantonio; Heinz Becker; B. Michael Ghadimi; Thomas Ried

Genomic aberrations on chromosome 8 are common in colon cancer, and are associated with lymph node and distant metastases as well as with disease susceptibility. This prompted us to generate a high-resolution map of genomic imbalances of chromosome 8 in 51 primary colon carcinomas using a custom-designed genomic array consisting of a tiling path of BAC clones. This analysis confirmed the dominant role of this chromosome. Unexpectedly, the position of the breakpoints suggested colocalization with structural variants in the human genome. In order to map these sites with increased resolution and to extend the analysis to the entire genome, we analyzed a subset of these tumors (n = 32) by comparative genomic hybridization on a 185K oligonucleotide array platform. Our comprehensive map of the colon cancer genome confirmed recurrent and specific low-level copy number changes of chromosomes 7, 8, 13, 18, and 20, and unveiled additional, novel sites of genomic imbalances including amplification of a histone gene cluster on chromosome 6p21.1-21.33 and deletions on chromosome 4q34-35. The systematic comparison of segments of copy number change with gene expression profiles showed that genomic imbalances directly affect average expression levels. Strikingly, we observed a significant association of chromosomal breakpoints with structural variants in the human genome: 41% of all copy number changes occurred at sites of such copy number variants (P < 2.2e(-16)). Such an association has not been previously described and reveals a yet underappreciated plasticity of the colon cancer genome; it also points to potential mechanisms for the induction of chromosomal breakage in cancer cells.


Radiotherapy and Oncology | 2010

KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy

Jochen Gaedcke; Marian Grade; Klaus Jung; Markus Schirmer; Peter Jo; Christoph Obermeyer; Hendrik A. Wolff; Markus K. A. Herrmann; Tim Beissbarth; Heinz Becker; Thomas Ried; Michael Ghadimi

BACKGROUND AND PURPOSE KRAS and BRAF are mutated in 35% and 10% of colorectal cancers, respectively. However, data specifically for locally advanced rectal cancers are scarce, and the frequency of KRAS mutations in codons 61 and 146 remains to be established. MATERIALS AND METHODS DNA was isolated from pre-therapeutic biopsies of 94 patients who were treated within two phase-III clinical trials receiving preoperative chemoradiotherapy. Mutation status of KRAS exons 1-3 and BRAF exon 15 was established using the ABI PRISM Big Dye Sequencing Kit and subsequently correlated with clinical parameters. RESULTS Overall, KRAS was mutated in 45 patients (48%). Twenty-nine mutations (64%) were located in codon 12, 10 mutations (22%) in codon 13, and 3 mutations (7%) in codons 61 and 146. No V600E BRAF mutation was detected. The presence of KRAS mutations was correlated neither with tumor response or lymph node status after preoperative chemoradiotherapy nor with overall survival or disease-free survival. When KRAS exon 1 mutations were separated based on the amino-acid exchange, we again failed to detect significant correlations (p=0.052). However, G12V mutations appeared to be associated with higher rates of tumor regression than G13D mutations (p=0.012). CONCLUSION We are the first to report the mutation status of KRAS and BRAF in pre-therapeutic biopsies from locally advanced rectal cancers. The high number of KRAS mutations in codons 61 and 146 emphasizes the importance to expand current mutation analyses, whereas BRAF mutations are not relevant for rectal carcinogenesis. Although the KRAS mutation status was not correlated with response, the subtle difference between G12V and G13D mutations warrants analysis of a larger patient population.


Radiotherapy and Oncology | 2009

CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116

Claudia Dittfeld; Antje Dietrich; Susann Peickert; Sandra Hering; Michael Baumann; Marian Grade; Thomas Ried

BACKGROUND AND PURPOSE CD133 is controversially discussed as putative (surrogate) marker for cancer stem/tumor-initiating cell populations (CSC/TIC) in epithelial tumors including colorectal carcinomas (CRCs). We studied CD133 expression in established CRC cell lines and examined in vitro behavior, radioresponse and in vivo tumor formation of CD133(+/-) subpopulations of one cell line of interest. MATERIALS AND METHODS Ten CRC cell lines were analyzed for CD133 expression using flow cytometry and Western blotting. CD133+ and CD133(-) HCT-116 subpopulations were separated by FACS and studied in 2-D and 3-D culture and colony formation assays after irradiation. Subcutaneous xenograft formation was monitored in NMRI (nu/nu) mice. RESULTS AND CONCLUSIONS CRC cell lines could be classified into three groups: (i) CD133(-), (ii) CD133+ and (iii) those with two distinct CD133+ and CD133(-) subpopulations. Isolated CD133(+/-) HCT-116 subpopulations were studied relative to the original fraction. No difference was found in 2-D growth, spheroid formation or radioresponse in vitro. Also, tumor formation and growth rate did not differ for the sorted subpopulations. However, a subset of xenografts originated from CD133(-) HCT-116 showed a striking enrichment in the CD133+ fraction. Our data show that CD133 expression is not selective for sphere forming, tumor-initiating or radioresistant subpopulations in the HCT-116 CRC cell lines. This implies that CD133 cannot be regarded as a CSC/TIC marker in all CRC cell lines and that functional measurements of tumor formation have to generally accompany CSC/TIC-directed mechanistic or therapeutic studies.


International Journal of Radiation Oncology Biology Physics | 2010

A gene expression signature for chemoradiosensitivity of colorectal cancer cells.

Melanie Spitzner; Georg Emons; Frank Kramer; Jochen Gaedcke; Margret Rave-Fränk; Jens-Gerd Scharf; Peter Burfeind; Heinz Becker; Tim Beissbarth; B. Michael Ghadimi; Thomas Ried; Marian Grade

PURPOSE The standard treatment of patients with locally advanced rectal cancers comprises preoperative 5-fluorouracil-based chemoradiotherapy followed by standardized surgery. However, tumor response to multimodal treatment has varied greatly, ranging from complete resistance to complete pathologic regression. The prediction of the response is, therefore, an important clinical need. METHODS AND MATERIALS To establish in vitro models for studying the molecular basis of this heterogeneous tumor response, we exposed 12 colorectal cancer cell lines to 3 μM of 5-fluorouracil and 2 Gy of radiation. The differences in treatment sensitivity were then correlated with the pretherapeutic gene expression profiles of these cell lines. RESULTS We observed a heterogeneous response, with surviving fractions ranging from 0.28 to 0.81, closely recapitulating clinical reality. Using a linear model analysis, we identified 4,796 features whose expression levels correlated significantly with the sensitivity to chemoradiotherapy (Q <.05), including many genes involved in the mitogen-activated protein kinase signaling pathway or cell cycle genes. These data have suggested a potential relevance of the insulin and Wnt signaling pathways for treatment response, and we identified STAT3, RASSF1, DOK3, and ERBB2 as potential therapeutic targets. The microarray measurements were independently validated for a subset of these genes using real-time polymerase chain reactions. CONCLUSION We are the first to report a gene expression signature for the in vitro chemoradiosensitivity of colorectal cancer cells. We anticipate that this analysis will unveil molecular biomarkers predictive of the response of rectal cancers to chemoradiotherapy and enable the identification of genes that could serve as targets to sensitize a priori resistant primary tumors.

Collaboration


Dive into the Marian Grade's collaboration.

Top Co-Authors

Avatar

Jochen Gaedcke

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Thomas Ried

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Becker

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Emons

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Tim Beissbarth

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Jo

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge