Marian Grman
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marian Grman.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Miriam M. Cortese-Krott; Gunter Georg Kuhnle; Alex Dyson; Bernadette O. Fernandez; Marian Grman; DuMond Jf; Mark P. Barrow; McLeod G; Hidehiko Nakagawa; Karol Ondrias; Péter Nagy; King Sb; Saavedra Je; Keefer Lk; Mervyn Singer; Malte Kelm; Anthony R. Butler; Martin Feelisch
Significance Reactions of sulfur-centered nucleophiles with nitrogenous species have been studied independently for more than a century for synthetic/industrial purposes; to understand geochemical, atmospheric, and biological processes; and to explain the origins of life. Various products and reaction mechanisms were proposed. We here identify a singular process comprising a network of cascading chemical reactions that form three main bioactive products at physiological pH: nitrosopersulfide, polysulfides, and dinitrososulfite. These anionic products scavenge, transport, and release NO/HNO or sulfide/sulfane sulfur, each displaying distinct chemistries and bioactivities. Our observations provide a chemical foundation for the cross-talk between the NO and H2S signaling pathways in biology and suggest that the biological actions of these entities can be neither considered nor studied in isolation. Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.
Redox biology | 2014
Miriam M. Cortese-Krott; Bernadette O. Fernandez; José L.T. Santos; Evanthia Mergia; Marian Grman; Péter Nagy; Malte Kelm; Anthony R. Butler; Martin Feelisch
Sulfide salts are known to promote the release of nitric oxide (NO) from S-nitrosothiols and potentiate their vasorelaxant activity, but much of the cross-talk between hydrogen sulfide and NO is believed to occur via functional interactions of cell regulatory elements such as phosphodiesterases. Using RFL-6 cells as an NO reporter system we sought to investigate whether sulfide can also modulate nitrosothiol-mediated soluble guanylyl cyclase (sGC) activation following direct chemical interaction. We find a U-shaped dose response relationship where low sulfide concentrations attenuate sGC stimulation by S-nitrosopenicillamine (SNAP) and cyclic GMP levels are restored at equimolar ratios. Similar results are observed when intracellular sulfide levels are raised by pre-incubation with the sulfide donor, GYY4137. The outcome of direct sulfide/nitrosothiol interactions also critically depends on molar reactant ratios and is accompanied by oxygen consumption. With sulfide in excess, a ‘yellow compound’ accumulates that is indistinguishable from the product of solid-phase transnitrosation of either hydrosulfide or hydrodisulfide and assigned to be nitrosopersulfide (perthionitrite, SSNO−; λmax 412 nm in aqueous buffers, pH 7.4; 448 nm in DMF). Time-resolved chemiluminescence and UV–visible spectroscopy analyses suggest that its generation is preceded by formation of the short-lived NO-donor, thionitrite (SNO−). In contrast to the latter, SSNO− is rather stable at physiological pH and generates both NO and polysulfides on decomposition, resulting in sustained potentiation of SNAP-induced sGC stimulation. Thus, sulfide reacts with nitrosothiols to form multiple bioactive products; SSNO− rather than SNO− may account for some of the longer-lived effects of nitrosothiols and contribute to sulfide and NO signaling.
Nitric Oxide | 2015
Andrea Berenyiova; Marian Grman; Ana Mijušković; Andrej Staško; Anton Misak; Péter Nagy; Elena Ondriasova; Sona Cacanyiova; Vlasta Brezová; Martin Feelisch; Karol Ondrias
The chemical interaction of sodium sulfide (Na2S) with the NO-donor S-nitrosoglutathione (GSNO) has been described to generate new reaction products, including polysulfides and nitrosopersulfide (SSNO(-)) via intermediacy of thionitrous acid (HSNO). The aim of the present work was to investigate the vascular effects of the longer-lived products of the Sulfide/GSNO interaction. Here we show that the products of this reaction relax precontracted isolated rings of rat thoracic aorta and mesenteric artery (but to a lesser degree rat uterus) with a >2-fold potency compared with the starting material, GSNO (50 nM), whereas Na2S and polysulfides have little effect at 1-5 µM. The onset of vasorelaxation of the reaction products was 7-10 times faster in aorta and mesenteric arteries compared with GSNO. Relaxation to GSNO (100-500 nM) was blocked by an inhibitor of soluble guanylyl cyclase, ODQ (0.1 and 10 µM), and by the NO scavenger cPTIO (100 µM), but less affected by prior acidification (pH 2-4), and unaffected by N-acetylcysteine (1 mM) or methemoglobin (20 µM heme). By contrast, relaxation to the Sulfide/GSNO reaction products (100-500 nM based on the starting material) was inhibited to a lesser extent by ODQ, only slightly decreased by cPTIO, more markedly inhibited by methemoglobin and N-acetylcysteine, and abolished by acidification before addition to the organ bath. The reaction mixture was found to generate NO as detected by EPR spectroscopy using N-(dithiocarboxy)-N-methyl-D-glucamine (MGD2)-Fe(2+) as spin trap. In conclusion, the Sufide/GSNO reaction products are faster and more pronounced vasorelaxants than GSNO itself. We conclude that in addition to NO formation from SSNO(-), reaction products other than polysulfides may give rise to nitroxyl (HNO) and be involved in the pronounced relaxation induced by the Sulfide/GSNO cross-talk.
Nitric Oxide | 2015
Lenka Tomasova; Michaela Pavlovičová; Lubica Malekova; Anton Misak; Frantisek Kristek; Marian Grman; Sona Cacanyiova; Milan Tomasek; Zuzana Tomaskova; Alexis Perry; Mark E. Wood; Lubica Lacinova; Karol Ondrias; Matthew Whiteman
H2S donor molecules have the potential to be viable therapeutic agents. The aim of this current study was (i) to investigate the effects of a novel triphenylphosphonium derivatised dithiolethione (AP39), in the presence and absence of reduced nitric oxide bioavailability and (ii) to determine the effects of AP39 on myocardial membrane channels; CaV3, RyR2 and Cl(-). Normotensive, L-NAME- or phenylephrine-treated rats were administered Na2S, AP39 or control compounds (AP219 and ADT-OH) (0.25-1 µmol kg(-1)i.v.) and haemodynamic parameters measured. The involvement of membrane channels T-type Ca(2+) channels CaV3.1, CaV3.2 and CaV3.3 as well as Ca(2+) ryanodine (RyR2) and Cl(-) single channels derived from rat heart sarcoplasmic reticulum were also investigated. In anaesthetised Wistar rats, AP39 (0.25-1 µmol kg(-1) i.v) transiently decreased blood pressure, heart rate and pulse wave velocity, whereas AP219 and ADT-OH and Na2S had no significant effect. In L-NAME treated rats, AP39 significantly lowered systolic blood pressure for a prolonged period, decreased heart rate and arterial stiffness. In electrophysiological studies, AP39 significantly inhibited Ca(2+) current through all three CaV3 channels. AP39 decreased RyR2 channels activity and increased conductance and mean open time of Cl(-) channels. This study suggests that AP39 may offer a novel therapeutic opportunity in conditions whereby (•)NO and H2S bioavailability are deficient such as hypertension, and that CaV3, RyR2 and Cl(-) cardiac membrane channels might be involved in its biological actions.
General Physiology and Biophysics | 2014
Marian Grman; Anton Misak; Claus Jacob; Zuzana Tomaskova; Anna Bertova; Burkholz T; Docolomansky P; Habala L; Karol Ondrias
We studied the involvement of O2, pH and low molecular thiols in H2S-induced decomposition of S-nitrosoglutathione (GSNO). The GSNO decomposition - •NO release was evaluated by UV-VIS spectroscopy and Griess assay. The H2S donor Na2S was used. O2 slightly increased, but was not necessary for the H2S-induced GSNO decomposition. The rate of GSNO decomposition depended on pH; the maximum rate was observed at pH 7.4-8.0, and this decreased with lowering pH (6.4-4.5) as well as with increasing pH at 9.0-12.0. H2S-induced GSNO decomposition was slowed by the presence of other thiols, such as L-cysteine (Cys), N-acetyl-L-cysteine (NAC) and L-glutathione (GSH), but not in the presence of L-methionine (Met) or oxidized glutathione (GSSG). In sharp contrast, at pH 6.0, H2S-induced GSNO decomposition was negligible, yet the presence of Cys, NAC and GSH induced the H2S-driven GSNO decomposition (whilst Met and GSSG were inactive). In conclusion we postulate an involvement of low molecular thiols and pH in •NO signaling, by modulating the interactions of H2S with nitroso compounds, and hence in part they also appear to control H2S-triggered •NO release. The interaction of H2S and/or its derivatives with the thiol group may be responsible for the observed effects.
General Physiology and Biophysics | 2012
Marian Grman; Anton Misak; Sona Cacanyiova; Frantisek Kristek; Zuzana Tomaskova; Anna Bertova; Karol Ondrias
Garlic, onion and leek have beneficial effects in treatment of numerous health disorders. The aim of the present study was to investigate underlying molecular mechanisms. To test the potency of the aqueous garlic, onion and leek extracts to release NO from GSNO we have measured NO oxidation product, NO(2)-, by the Griess reagent method. Further, we studied the ability of garlic extract to relax noradrenaline-precontracted rat aortic rings in the presence of GSNO and effects of garlic extract on electrical properties of rat heart intracellular chloride channels. We have observed that: i) garlic, onion and leek extracts released NO from GSNO in the order: garlic > onion > leek; ii) the ability of garlic extract to release NO was pH-dependent (8.0 > 7.4 > 6.0) and potentiated by thiols (Cys >> GSH = N-acetyl-cysteine > oxidized glutathione) at concentration 100 µmol/l; iii) the garlic extract (0.045 mg/ml) prolonged relaxation time of aortic rings induced by GSNO (50 nmol/l) and inhibited intracellular chloride channels. We suggest that NO-releasing properties of the garlic, onion and leek extracts and their interaction with Cys and GSH are involved in NO-signalling pathway which contributes to some of its numerous beneficial biological effects.
Cellular Physiology and Biochemistry | 2017
Barbora Chovancova; Sona Hudecova; Lubomira Lencesova; Petr Babula; Ingeborg Rezuchova; Adela Penesova; Marian Grman; Roman Moravčík; Michal Zeman; Olga Krizanova
Background/Aims: Melatonin is a hormone transferring information about duration of darkness to the organism and is known to modulate several signaling pathways in the cells, e.g. generation of endoplasmic reticulum stress, oxidative status of the cells, etc. Melatonin has been shown to exert antiproliferative and cytotoxic effects on various human cancers. We proposed that this hormone can differently affect tumour cells and healthy cells. Methods: We compared the effect of 24 h melatonin treatment on calcium transport (by fluorescent probes FLUO-3AM and Rhod-5N), ER stress (determined as changes in the expression of CHOP, XBP1 and fluorescently, using Thioflavin T), ROS formation (by CellROX® Green/Orange Reagent) and apoptosis induction (by Annexin-V-FLUOS/propidiumiodide) in two tumour cell lines – ovarian cancer cell line A2780 and stable cell line DLD1 derived from colorectal carcinoma, with non-tumour endothelial cell line EA.hy926. Results: Melatonin increased apoptosis in both tumour cell lines more than twice, while in EA.hy926 cells the apoptosis was increased only by 30%. As determined by silencing with appropriate siRNAs, both, type 1 sodium/calcium exchanger and type 1 IP3 receptor are involved in the apoptosis induction. Antioxidant properties of melatonin were significantly increased in EA.hy926 cells, while in tumour cell lines this effect was much weaker. Conclusion: Taken together, melatonin has different antioxidative effects on tumour cells compared to non-tumour ones; it also differs in the ability to induce apoptosis through the type 1 sodium/calcium exchanger, and type 1 IP3 receptor. Different targeting of calcium transport systems in tumour and normal, non-tumour cells is suggested as a key mechanism how melatonin can exert its anticancer effects. Therefore, it might have a potential as a novel therapeutic implication in cancer treatment.
FEBS Letters | 2017
Milan Tomasek; Anton Misak; Marian Grman; Zuzana Tomaskova
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection.
Experimental Physiology | 2017
Anton Misak; Frantisek Kristek; Lenka Tomasova; Marian Grman; Elena Ondriasova; Olga Krizanova; Karol Ondrias
What is the central question of this study? We wanted to find out whether the relationship between rat arterial pulse waveform (APW) parameters and blood pressure could be described by known mathematical functions and find mathematical parameters for conditions of hypertension resulting from decreased NO bioavailability. What is the main finding and its importance? We found mathematical functions and their parameters that approximate the relationships of 12 APW parameters to systolic and diastolic blood pressure in conditions of decreased NO bioavailability. The results may assign APW parameters to decreased NO bioavailability, which may have predictive or diagnostic value.
Antioxidants | 2017
Marian Grman; Muhammad Jawad Nasim; Roman Leontiev; Anton Misak; Veronika Jakusova; Karol Ondrias; Claus Jacob
Since the heydays of Reactive Sulfur Species (RSS) research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen the emergence of inorganic reactive sulfur species, ranging from inorganic polysulfides (HSx−/Sx2−) to thionitrous acid (HSNO) and nitrosopersulfide (SSNO−). These inorganic species engage in a complex interplay of reactions in vitro and possibly also in vivo. Employing a combination of spectrophotometry and sulfide assays, we have investigated the role of polysulfanes from garlic during the release of nitric oxide (•NO) from S-nitrosoglutathione (GSNO) in the absence and presence of thiol reducing agents. Our studies reveal a distinct enhancement of GSNO decomposition by compounds such as diallyltrisulfane, which is most pronounced in the presence of cysteine and glutathione and presumably proceeds via the initial release of an inorganic mono- or polysulfides, i.e., hydrogen sulfide (H2S) or HSx−, from the organic polysulfane. Albeit being of a preliminary nature, our spectrophotometric data also reveals a complicated underlying mechanism which appears to involve transient species such as SSNO−. Eventually, more in depth studies are required to further explore the underlying chemistry and wider biological and nutritional implications of this interplay between edible garlic compounds, reductive activation, inorganic polysulfides and their interplay with •NO storage and release.