Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marian Lindsay Hamshere is active.

Publication


Featured researches published by Marian Lindsay Hamshere.


Nature Genetics | 2009

Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


Archive | 2009

Letter abstract - Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's Disease

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Sing Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


Nature Genetics | 2008

Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder

Manuel A. Ferreira; Michael Conlon O'Donovan; Ian Richard Jones; Douglas M. Ruderfer; Lisa Jones; Jinbo Fan; George Kirov; Roy H. Perlis; Elaine K. Green; Jordan W. Smoller; Detelina Grozeva; Jennifer Stone; Ivan Nikolov; Marian Lindsay Hamshere; Vishwajit L. Nimgaonkar; Valentina Moskvina; Michael E. Thase; Sian Caesar; Gary S. Sachs; Jennifer Franklin; Katherine Gordon-Smith; Kristin Ardlie; Stacey Gabriel; Christine Fraser; Brendan Blumenstiel; Matthew DeFelice; Gerome Breen; Michael Gill; Derek W. Morris; Amanda Elkin

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10−9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10−8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


Nature Genetics | 2008

Identification of loci associated with schizophrenia by genome-wide association and follow-up

Michael Conlon O'Donovan; Nicholas John Craddock; Nadine Norton; Hywel Williams; T. Peirce; Valentina Escott-Price; Ivan Nikolov; Marian Lindsay Hamshere; Liam Stuart Carroll; Lyudmila Georgieva; Sarah Dwyer; Peter Holmans; Jonathan Marchini; Chris C. A. Spencer; Bryan Howie; Hin-Tak Leung; Annette M. Hartmann; Hans-Jürgen Möller; Derek W. Morris; Yongyong Shi; Guoyin Feng; Per Hoffmann; Peter Propping; Catalina Vasilescu; Wolfgang Maier; Marcella Rietschel; Stanley Zammit; Johannes Schumacher; Emma M. Quinn; Thomas G. Schulze

We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10−5 in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 × 10−4), and the overall pattern of replication was unlikely to occur by chance (P = 9 × 10−8). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 × 10−7) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 × 10−9).


PLOS ONE | 2010

Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

Lesley Jones; Peter Holmans; Marian Lindsay Hamshere; Denise Harold; Valentina Moskvina; Dobril Ivanov; Andrew Pocklington; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Jaspreet Singh Pahwa; Nicola L. Jones; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd

Background Late Onset Alzheimers disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimers disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches.


Molecular Psychiatry | 2010

The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia

Elaine K. Green; Detelina Grozeva; Ian Richard Jones; Lisa Jones; George Kirov; Sian Caesar; Katherine Gordon-Smith; Christine Fraser; Liz Forty; E. Russell; Marian Lindsay Hamshere; Valentina Moskvina; Ivan Nikolov; Anne Farmer; Peter McGuffin; Peter Holmans; Michael John Owen; Michael Conlon O'Donovan; Nicholas John Craddock

Molecular genetic analysis offers opportunities to advance our understanding of the nosological relationship between psychiatric diagnostic categories in general, and the mood and psychotic disorders in particular. Strong evidence (P=7.0 × 10−7) of association at the polymorphism rs1006737 (within CACNA1C, the gene encoding the α-1C subunit of the L-type voltage-gated calcium channel) with the risk of bipolar disorder (BD) has recently been reported in a meta-analysis of three genome-wide association studies of BD, including our BD sample (N=1868) studied within the Wellcome Trust Case Control Consortium. Here, we have used our UK case samples of recurrent major depression (N=1196) and schizophrenia (N=479) and UK non-psychiatric comparison groups (N=15316) to examine the spectrum of phenotypic effect of the bipolar risk allele at rs1006737. We found that the risk allele conferred increased risk for schizophrenia (P=0.034) and recurrent major depression (P=0.013) with similar effect sizes to those previously observed in BD (allelic odds ratio ∼1.15). Our findings are evidence of some degree of overlap in the biological underpinnings of susceptibility to mental illness across the clinical spectrum of mood and psychotic disorders, and show that at least some loci can have a relatively general effect on susceptibility to diagnostic categories, as currently defined. Our findings will contribute to a better understanding of the pathogenesis of major psychiatric illness, and such knowledge should be useful in providing an etiological rationale for shaping psychiatric nosology, which is currently reliant entirely on descriptive clinical data.


American Journal of Human Genetics | 2005

Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q

Matthew B. McQueen; Bernie Devlin; Stephen V. Faraone; Vishwajit L. Nimgaonkar; Pamela Sklar; Jordan W. Smoller; Rami Abou Jamra; Margot Albus; Silviu-Alin Bacanu; Miron Baron; Thomas B. Barrett; Wade H. Berrettini; Deborah Blacker; William Byerley; Sven Cichon; Willam Coryell; Nicholas John Craddock; Mark J. Daly; J. Raymond DePaulo; Howard J. Edenberg; Tatiana Foroud; Michael Gill; T. Conrad Gilliam; Marian Lindsay Hamshere; Ian Richard Jones; Lisa Jones; S H Juo; John R. Kelsoe; David Lambert; Christoph Lange

Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.


Human Molecular Genetics | 2011

Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries

Hywel Williams; Nicholas John Craddock; Giancarlo Russo; Marian Lindsay Hamshere; Valentina Moskvina; Sarah Dwyer; Rhodri Smith; Elaine K. Green; Detelina Grozeva; Peter Holmans; Michael John Owen; Michael Conlon O'Donovan

Recent findings from genetic epidemiology and from genome-wide association studies point strongly to a partial overlap in the genes that contribute susceptibility to schizophrenia and bipolar disorder (BD). Previous data have also directly implicated one of the best supported schizophrenia-associated loci, zinc finger binding protein 804A (ZNF804A), as showing trans-disorder effects, and the same is true for one of the best supported bipolar loci, calcium channel, voltage-dependent, L type, alpha 1C subunit (CACNA1C) which has also been associated with schizophrenia. We have undertaken a cross-phenotype study based upon the remaining variants that show genome-wide evidence for association in large schizophrenia and BD meta-analyses. These comprise in schizophrenia, SNPs in or in the vicinity of transcription factor 4 (TCF4), neurogranin (NRGN) and an extended region covering the MHC locus on chromosome 6. For BD, the strongly supported variants are in the vicinity of ankyrin 3, node of Ranvier (ANK3) and polybromo-1 (PBRM1). Using data sets entirely independent of their original discoveries, we observed strong evidence that the PBRM1 locus is also associated with schizophrenia (P = 0.00015) and nominally significant evidence (P < 0.05) that the NRGN and the extended MHC region are associated with BD. Moreover, considering this highly restricted set of loci as a group, the evidence for trans-disorder effects is compelling (P = 4.7 × 10(-5)). Including earlier reported data for trans-disorder effects for ZNF804A and CACNA1C, six out of eight of the most robustly associated loci for either disorder show trans-disorder effects.


Molecular Psychiatry | 2013

Genome wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC

Marian Lindsay Hamshere; James Tynan Rhys Walters; Rhodri Smith; Alexander Richards; Elaine K. Green; Detelina Grozeva; Ian Richard Jones; Elizabeth Forty; Lisa A. Jones; Katherine Gordon-Smith; B. Riley; T. O'Neill; Kenneth S. Kendler; Pamela Sklar; S Purcell; J. Kranz; Derek W. Morris; Michael Gill; Peter Holmans; Nicholas John Craddock; Aiden Corvin; Michael John Owen; Michael Conlon O'Donovan

The Schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC) highlighted 81 single-nucleotide polymorphisms (SNPs) with moderate evidence for association to schizophrenia. After follow-up in independent samples, seven loci attained genome-wide significance (GWS), but multi-locus tests suggested some SNPs that did not do so represented true associations. We tested 78 of the 81 SNPs in 2640 individuals with a clinical diagnosis of schizophrenia attending a clozapine clinic (CLOZUK), 2504 cases with a research diagnosis of bipolar disorder, and 2878 controls. In CLOZUK, we obtained significant replication to the PGC-associated allele for no fewer than 37 (47%) of the SNPs, including many prior GWS major histocompatibility complex (MHC) SNPs as well as 3/6 non-MHC SNPs for which we had data that were reported as GWS by the PGC. After combining the new schizophrenia data with those of the PGC, variants at three loci (ITIH3/4, CACNA1C and SDCCAG8) that had not previously been GWS in schizophrenia attained that level of support. In bipolar disorder, we also obtained significant evidence for association for 21% of the alleles that had been associated with schizophrenia in the PGC. Our study independently confirms association to three loci previously reported to be GWS in schizophrenia, and identifies the first GWS evidence in schizophrenia for a further three loci. Given the number of independent replications and the power of our sample, we estimate 98% (confidence interval (CI) 78–100%) of the original set of 78 SNPs represent true associations. We also provide strong evidence for overlap in genetic risk between schizophrenia and bipolar disorder.


Human Genetics | 2000

Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools

Bastiaan Hoogendoorn; Nadine Norton; George Kirov; Nigel Williams; Marian Lindsay Hamshere; Gillian Spurlock; Jehannine Austin; Mark Stephens; Paul Robert Buckland; Michael John Owen; Michael Conlon O'Donovan

Abstract. At present, the cost of genotyping single nucleotide polymorphisms (SNPs) in large numbers of subjects poses a formidable problem for molecular genetic approaches to complex diseases. We have tested the possibility of using primer extension and denaturing high performance liquid chromatography to estimate allele frequencies of SNPs in pooled DNA samples. Our data show that this method should allow the accurate estimation of absolute allele frequencies in pooled samples of DNA and also of the difference in allele frequency between different pooled DNA samples. This technique therefore offers an efficient and cheap method for genotyping SNPs in large case-control and family-based association samples.

Collaboration


Dive into the Marian Lindsay Hamshere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Jones

University of Worcester

View shared research outputs
Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter Alan Holmans

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge