Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana Alonso is active.

Publication


Featured researches published by Mariana Alonso.


The Journal of Neuroscience | 2006

Olfactory Discrimination Learning Increases the Survival of Adult-Born Neurons in the Olfactory Bulb

Mariana Alonso; Cécile Viollet; Marie-Madeleine Gabellec; Vannary Meas-Yedid; Jean-Christophe Olivo-Marin; Pierre-Marie Lledo

In the olfactory bulb (OB), new neurons are added throughout life, forming an integral part of the functioning circuit. Yet only some of them survive more than a month. To determine whether this turnover depends on olfactory learning, we examined the survival of adult newborn cells labeled with the cell division marker BrdU, administered before learning in an olfactory discrimination task. We report that discrimination learning increases the number of newborn neurons in the adult OB by prolonging their survival. Simple exposure to the pair of olfactory cues did not alter neurogenesis, indicating that the mere activation of sensory inputs during the learning task was insufficient to alter neurogenesis. The increase in cell survival after learning was not uniformly distributed throughout angular sectors of coronal sections of the OB. Monitoring odor activation maps using patterns of Zif268 immediate early gene expression revealed that survival was greater in regions more activated by the non-reinforced odorant. We conclude that sensory activation in a learning context not only controls the total number of newborn neurons in the adult OB, but also refines their precise location. Shaping the distribution of newborn neurons by influencing their survival could optimize the olfactory information processing required for odor discrimination.


European Journal of Neuroscience | 2001

The ubiquitin-proteasome cascade is required for mammalian long-term memory formation.

Mariella Lopez-Salon; Mariana Alonso; Monica Ryff Moreira Roca Vianna; Haydee Viola; Tadeu Mello e Souza; Ivan Izquierdo; Juana M. Pasquini; Jorge H. Medina

It has been recently demonstrated that ubiquitin–proteasome‐mediated proteolysis is required for long‐term synaptic facilitation in Aplysia. Here we show that the hippocampal blockade of this proteolytic pathway is also required for the formation of long‐term memory in the rat. Bilateral infusion of lactacystin, a specific proteasome inhibitor, to the CA1 region caused full retrograde amnesia for a one‐trial inhibitory avoidance learning when given 1, 4 or 7h, but not 10 h, after training. Proteasome inhibitor I produced similar effects. In addition, inhibitory avoidance training resulted in an increased ubiquitination and 26S proteasome proteolytic activity and a decrease in the levels of IkappaB, a substrate of the ubiquitin–proteasome cascade, in hippocampus 4 h after training. Together, these findings indicate that the ubiquitin–proteasome cascade is crucial for the establishment of LTM in the behaving animal.


Cellular and Molecular Neurobiology | 2002

Signaling Mechanisms Mediating BDNF Modulation of Memory Formation In Vivo in the Hippocampus

Mariana Alonso; Monica Ryff Moreira Roca Vianna; Ivan Izquierdo; Jorge H. Medina

Given that brain-derived neutrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in the adult hippocampus, here we examined signaling mechanisms in vivo in the hippocampus mediating BDNF modulation of long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the CA1 region of the dorsal hippocampus decreased extracellular-signal regulated kinase 2 (ERK2) and CREB activation and impaired LTM retention scores. Inhibition of ERK1/2 activation by PD098059 produced similar effects and also reduced CREB phosphorylation. In contrast, intrahippocampal administration of recombinant human BDNF increased ERK1/2 and CREB activation and facilitated LTM. Activated-p38, activated-PKC isoforms, and activated-AKT were unaltered after BDNF or anti-BDNF infusion. In addition, no changes were found on αPKA and βPKA catalytic subunits in nuclear samples. Thus, our results suggest that BDNF exerts its role in LTM formation in vivo in CA1 region of the hippocampus, at least in part, via CREB activation. Moreover, BDNF-induced CREB activation appears to be mediated mainly through the activation of ERK1/2 signaling pathway.


Journal of Neurochemistry | 2004

Mitochondrial extracellular signal‐regulated kinases 1/2 (ERK1/2) are modulated during brain development

Mariana Alonso; Mariana Melani; Daniela P. Converso; Ariel Jaitovich; M. Cecilia Carreras; Jorge H. Medina; Juan José Poderoso

Intracellular activation and trafficking of extracellular signal‐regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy‐linked functions, redox metabolism and activation of pro‐ or anti‐apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19‐P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho‐MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho‐ERK1/2 increased at 1 μm hydrogen peroxide (H2O2) concentration, but it decreased at higher 50–100 μm H2O2, almost disappearing after the organelles were maximally stimulated to produce H2O2 with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.


Neuroscience | 2000

Participation of hippocampal metabotropic glutamate receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval.

German Szapiro; Luciana A. Izquierdo; Mariana Alonso; Daniela M. Barros; Gustavo Paratcha; Patricia Ardenghi; Patrícia Pereira; Jorge H. Medina; Ivan Izquierdo

The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. In contrast to memory formation, the information about the molecular mechanisms of memory retrieval is surprisingly scarce and fragmentary. Here we show that pretest inhibition of the specific upstream activator of mitogen-activated protein kinase kinase, or of protein kinase A in the hippocampus, blocked retrieval of long-term memory for an inhibitory avoidance task, a hippocampal-dependent learning task. An activator of protein kinase A enhanced retrieval. Mitogen-activated protein kinase activation increased in the hippocampus during retrieval, while protein kinase A activity remained unchanged. Pretest intrahippocampal blockade of metabotropic glutamate receptors or alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionic acid/kainate receptors, but not N-methyl-D-aspartate receptors or calcium/calmodulin dependent-protein kinase II, impaired retrieval. Thus, recall of inhibitory avoidance activates mitogen-activated protein kinase, which is necessary, along with metabotropic glutamate receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionic acid/kainate receptors, and protein kinase A, for long-term memory expression. Our results indicate that memory formation and retrieval may share some molecular mechanisms in the hippocampus.


European Journal of Neuroscience | 2001

Novelty enhances retrieval: molecular mechanisms involved in rat hippocampus

Luciana A. Izquierdo; Haydee Viola; Daniela M. Barros; Mariana Alonso; Monica Ryff Moreira Roca Vianna; Melina Furman; M. Levi de Stein; German Szapiro; Cleverson Rodrigues; Humberto Kukhyun Choi; Jorge H. Medina; Ivan Izquierdo

Rats exposed to a novel environment just prior to or 1–2 h, but not 4 or 6 h, before retention testing exhibited an enhanced retrieval of a one‐trial inhibitory avoidance training. The bilateral intrahippocampal infusion of PD098059, an inhibitor of mitogen‐activated protein kinase (MAPK), the specific upstream activator of p42 and p44 MAPKs, given 10 min before the exposure to the novel environment, blocked the enhancing effect of novelty on memory retrieval. In addition, prenovelty infusion of dl‐2‐amino‐5‐phosphonovalerate (APV), an antagonist of glutamate NMDA receptors, produced similar effects. The exposure to the novel environment is associated with an activation of p42 and p44 MAPKs and an increase in the phosphorylation state of the transcription factor cAMP response element binding protein (CREB). No changes were observed in cAMP‐dependent protein kinase (PKA) activity or in α‐CAMKII activation. Taken together, our results indicate that novelty activates hippocampal MAPKs, which are necessary, along with glutamate NMDA receptors, for the enhancing effect of novelty on retrieval.


Neuroreport | 1998

Muscarinic toxin selective for m4 receptors impairs memory in the rat.

Diana Jerusalinsky; Edgar Kornisiuk; Paula Alfaro; Jorge Alberto Quillfeldt; Mariana Alonso; Emiliano Rial Verde; Carlos Cerveñansky; Alan L. Harvey

THE selectivity of the muscarinic toxin MT3 from green mamba snake venom was corroborated by inhibition of the binding of [3H]NMS, a classical muscarinic radioligand, to native and cloned muscarinic receptors, showing 214-fold higher affinity for m4 than for m1 subtype, without significant binding to the others. The highest concentrations of MT3 sites (putative m4 receptors) in the rat brain were found in striatum and olfac-tory tubercle, intermediate concentration in dentate gyrus and CA1, and lower but still conspicuous levels in CA3 and frontal cortex. MT3 caused retrograde amnesia of an inhibitory avoidance task, when injected into the dorsal hippocampus of rats after training, suggesting a positive role of these MT3 sensitive sites, which are probably m4 muscarinic receptors, in memory consolidation of this task.


Cellular and Molecular Neurobiology | 2006

Early Activation of Extracellular Signal-Regulated Kinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation of a Fear-Motivated Learning

Lionel Muller Igaz; Milena Winograd; Martín Cammarota; Luciana A. Izquierdo; Mariana Alonso; Ivan Izquierdo; Jorge H. Medina

1. According to its duration there are, at least, two major forms of memory in mammals: short term memory (STM) which develops in a few seconds and lasts several hours and long-term memory (LTM) lasting days, weeks and even a lifetime. In contrast to LTM, very little is known about the neural, cellular and molecular requirements for mammalian STM formation.2. Here we show that early activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the hippocampus is required for the establishment of STM for a one-trial inhibitory avoidance task in the rat. Immediate posttraining infusion of U0126 (a selective inhibitor of ERK kinase) into the CA1 region of the dorsal hippocampus blocked STM formation.3. Reversible inactivation of the entorhinal cortex through muscimol infusion produced deficits in STM and a selective and rapid decrease in hippocampal ERK2 activation.4. Together with our previous findings showing a rapid decrease in ERK2 activation and impaired STM after blocking BDNF function, the present results strongly suggest that ERK2 signaling in the hippocampus is a critical step in STM processing.


Journal of Visualized Experiments | 2011

Selective viral transduction of adult-born olfactory neurons for chronic in vivo optogenetic stimulation.

Gabriel Lepousez; Mariana Alonso; Sebastian Wagner; Benjamin W. Gallarda; Pierre-Marie Lledo

Local interneurons are continuously regenerated in the olfactory bulb of adult rodents. In this process, called adult neurogenesis, neural stem cells in the walls of the lateral ventricle give rise to neuroblasts that migrate for several millimeters along the rostral migratory stream (RMS) to reach and incorporate into the olfactory bulb. To study the different steps and the impact of adult-born neuron integration into preexisting olfactory circuits, it is necessary to selectively label and manipulate the activity of this specific population of neurons. The recent development of optogenetic technologies offers the opportunity to use light to precisely activate this specific cohort of neurons without affecting surrounding neurons. Here, we present a series of procedures to virally express Channelrhodopsin2(ChR2)-YFP in a temporally restricted cohort of neuroblasts in the RMS before they reach the olfactory bulb and become adult-born neurons. In addition, we show how to implant and calibrate a miniature LED for chronic in vivo stimulation of ChR2-expressing neurons.


Learning & Memory | 2002

From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning.

William J. Tyler; Mariana Alonso; Clive R. Bramham; Lucas Pozzo-Miller

Collaboration


Dive into the Mariana Alonso's collaboration.

Top Co-Authors

Avatar

Jorge H. Medina

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Ryff Moreira Roca Vianna

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Haydee Viola

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Luciana A. Izquierdo

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

German Szapiro

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Daniela M. Barros

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Tadeu Mello e Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ivan Antonio Izquierdo

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Juana M. Pasquini

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge