Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana Angoa-Pérez is active.

Publication


Featured researches published by Mariana Angoa-Pérez.


Journal of Neuroscience Methods | 2012

A mouse model of human repetitive mild traumatic brain injury

Michael J. Kane; Mariana Angoa-Pérez; Denise I. Briggs; David C. Viano; Christian W. Kreipke; Donald M. Kuhn

A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 min. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel.


Journal of Neurochemistry | 2012

Mephedrone, an Abused Psychoactive Component of “Bath Salts” and Methamphetamine Congener, Does not Cause Neurotoxicity to Dopamine Nerve Endings of the Striatum

Mariana Angoa-Pérez; Michael J. Kane; Dina M. Francescutti; Katherine E. Sykes; Mrudang Shah; Abiy M. Mohammed; David M. Thomas; Donald M. Kuhn

J. Neurochem. (2012) 120, 1097–1107.


PLOS ONE | 2012

Mice Genetically Depleted of Brain Serotonin Display Social Impairments, Communication Deficits and Repetitive Behaviors: Possible Relevance to Autism

Michael J. Kane; Mariana Angoa-Pérez; Denise I. Briggs; Catherine E. Sykes; Dina M. Francescutti; David R. Rosenberg; Donald M. Kuhn

Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2−/−) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2−/− mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.


Neuroscience & Biobehavioral Reviews | 2011

Potential mechanisms underlying anxiety and depression in Parkinson's disease: consequences of L-DOPA treatment

Karen L. Eskow Jaunarajs; Mariana Angoa-Pérez; Donald M. Kuhn; Christopher Bishop

Though the most recognizable symptoms of Parkinsons disease (PD) are motor-related, many patients also suffer from debilitating affective symptoms that deleteriously influence quality of life. Dopamine (DA) loss is likely involved in the onset of depression and anxiety in PD. However, these symptoms are not reliably improved by DA replacement therapy with l-3,4-dihydroxyphenylalanine (l-DOPA). In fact, preclinical and clinical evidence suggests that l-DOPA treatment may worsen affect. Though the neurobiological mechanisms remain unclear, recent research contends that l-DOPA further perturbs the function of the norepinephrine and serotonin systems, already affected by PD pathology, which have been intimately linked to the development and expression of anxiety and depression. As such, this review provides an overview of the clinical characteristics of affective disorders in PD, examines the utility of animal models for the study of anxiety and depression in PD, and finally, discusses potential mechanisms by which DA loss and subsequent l-DOPA therapy influence monoamine function and concomitant affective symptoms.


Journal of Neurochemistry | 2012

Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity

Mariana Angoa-Pérez; Michael J. Kane; Denise I. Briggs; Catherine E. Sykes; Mrudang Shah; Dina M. Francescutti; David R. Rosenberg; David M. Thomas; Donald M. Kuhn

J. Neurochem. (2012) 121, 974–984.


Journal of Neurochemistry | 2013

Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA

Mariana Angoa-Pérez; Michael J. Kane; Denise I. Briggs; Dina M. Francescutti; Catherine E. Sykes; Mrudang Shah; David M. Thomas; Donald M. Kuhn

Mephedrone (4‐methylmethcathinone) is a β‐ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re‐uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine‐induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4‐methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine‐induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co‐abused with it, leading to heightened neurotoxicity.


Journal of Neurochemistry | 2014

Animal models of sports-related head injury: Bridging the gap between pre-clinical research and clinical reality

Mariana Angoa-Pérez; Michael J. Kane; Denise I. Briggs; Nieves Herrera-Mundo; David C. Viano; Donald M. Kuhn

Sports‐related head impact and injury has become a very highly contentious public health and medico‐legal issue. Near‐daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports‐related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life.


Genes, Brain and Behavior | 2014

Brain serotonin determines maternal behavior and offspring survival

Mariana Angoa-Pérez; Michael J. Kane; Catherine E. Sykes; Shane A. Perrine; Michael W. Church; Donald M. Kuhn

Maternal care is an indispensable component of offspring survival and development in all mammals and necessary for reproductive success. Although brain areas regulating maternal behaviors are innervated by serotonergic afferents, very little is known about the role of this neurotransmitter in these behaviors. To evaluate the contribution of serotonin to maternal care, we used mice with a null mutation in the gene for tryptophan hydroxylase‐2 (TPH2), which results in a genetic depletion of brain serotonin, and tested them in a wide range of maternal behavior paradigms. We found that litters born to and reared by TPH2−/− mothers showed decreased survival, lower weaning weights and increased cannibalization. In addition, TPH2−/− mothers performed poorly in pup retrieval, huddling, nest construction and high‐arched back nursing. Aggression in TPH2−/− dams was not triggered by lactation and was steadily high. Survival and weaning weight deficits of TPH2−/− pups were rescued by cross‐fostering and in litters of mixed genotype (TPH2−/− and TPH2−/+). However, the maternal behaviors of TPH2−/− dams did not improve when rearing either TPH2+/+ pups or mixed‐genotype litters. In addition, TPH2−/− pups significantly worsened the behavior of TPH2+/+ dams with respect to cannibalism, weaning weight and latency to attack. Olfactory and auditory functions of TPH2−/− females or anxiety‐like behaviors did not account for these maternal alterations as they were equal to their TPH2+/+ counterparts. These findings illustrate a profound influence of brain serotonin on virtually all elements of maternal behavior and establish that TPH2−/− pups can engender maladaptive mothering in dams of both genotypes.


Neurotoxicology | 2010

Soman increases neuronal COX-2 levels: Possible link between seizures and protracted neuronal damage

Mariana Angoa-Pérez; Christian W. Kreipke; David M. Thomas; Kerry Van Shura; Megan Lyman; John H. McDonough; Donald M. Kuhn

Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity.


Life Sciences | 2014

Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus.

Mariana Angoa-Pérez; Michael J. Kane; Nieves Herrera-Mundo; Dina M. Francescutti; Donald M. Kuhn

AIMS Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus. MAIN METHODS The status of 5HT nerve endings in the hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4. KEY FINDINGS Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone. SIGNIFICANCE Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together.

Collaboration


Dive into the Mariana Angoa-Pérez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge