Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana Casas is active.

Publication


Featured researches published by Mariana Casas.


Journal of Biological Chemistry | 2009

ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle

Sonja Buvinic; Gonzalo Almarza; Mario Bustamante; Mariana Casas; Javiera López; Manuel A. Riquelme; Juan C. Sáez; Juan Pablo Huidobro-Toro; Enrique Jaimovich

ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology.


The Journal of General Physiology | 2010

IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers

Mariana Casas; Reinaldo Figueroa; Gonzalo Jorquera; Matias Escobar; Jordi Molgó; Enrique Jaimovich

Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.


Journal of Cell Science | 2013

Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity

Gonzalo Jorquera; Francisco Altamirano; Ariel Contreras-Ferrat; Gonzalo Almarza; Sonja Buvinic; Vincent Jacquemond; Enrique Jaimovich; Mariana Casas

Summary An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-dependent Ca2+ signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P3 production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P3 was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-&agr;1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.


PLOS ONE | 2013

Nifedipine Treatment Reduces Resting Calcium Concentration, Oxidative and Apoptotic Gene Expression, and Improves Muscle Function in Dystrophic mdx Mice

Francisco Altamirano; Denisse Valladares; Carlos Henríquez-Olguín; Mariana Casas; Jose R. Lopez; Paul D. Allen; Enrique Jaimovich

Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.


PLOS ONE | 2015

ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

Alexis Díaz-Vegas; Cristian Campos; Ariel Contreras-Ferrat; Mariana Casas; Sonja Buvinic; Enrique Jaimovich; Alejandra Espinosa

During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.


Obesity Reviews | 2014

Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion

Maria L. Mizgier; Mariana Casas; Ariel Contreras-Ferrat; Paola Llanos; Jose E. Galgani

Pancreatic beta cells sense glucose flux and release as much insulin as required in order to maintain glycaemia within a narrow range. Insulin secretion is regulated by many factors including glucose, incretins, and sympathetic and parasympathetic tones among other physiological factors. To identify the mechanisms linking obesity‐related insulin resistance with impaired insulin secretion represents a central challenge. Recently, it has been argued that a crosstalk between skeletal muscle and the pancreas may regulate insulin secretion. Considering that skeletal muscle is the largest organ in non‐obese subjects and a major site of insulin‐ and exercise‐stimulated glucose disposal, it appears plausible that muscle might interact with the pancreas and modulate insulin secretion for appropriate peripheral intracellular glucose utilization. There is growing evidence that muscle can secrete so‐called myokines that can have auto/para/endocrine actions. Although it is unclear in which direction they act, interleukin‐6 seems to be a possible muscle‐derived candidate protein mediating such inter‐organ communication. We herein review some of the putative skeletal muscle‐derived factors mediating this interaction. In addition, the evidence coming from in vitro, animal and human studies that support such inter‐organ crosstalk is thoroughly discussed.


PLOS ONE | 2013

Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

Denisse Valladares; Gonzalo Almarza; Ariel Contreras; Mario Pavez; Sonja Buvinic; Enrique Jaimovich; Mariana Casas

ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.


International Journal of Sports Medicine | 2013

Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

Rodrigo Fernández-Verdejo; Mariana Casas; Jose E. Galgani; Enrique Jaimovich; Sonja Buvinic

Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organisms adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training.


Exercise and Sport Sciences Reviews | 2014

ATP signaling in skeletal muscle: from fiber plasticity to regulation of metabolism.

Mariana Casas; Sonja Buvinic; Enrique Jaimovich

Tetanic electrical stimulation releases adenosine triphosphate (ATP) from muscle fibers through pannexin-1 channels in a frequency-dependent manner; extracellular ATP activates signals that ultimately regulate gene expression and is able to increase glucose transport through activation of P2Y receptors, phosphatidylinositol 3-kinase, Akt, and AS160. We hypothesize that this mechanism is an important link between exercise and the regulation of muscle fiber plasticity and metabolism.


Methods of Molecular Biology | 2012

Measurement of Calcium Release Due to Inositol Trisphosphate Receptors in Skeletal Muscle

Mariana Casas; Francisco Altamirano; Enrique Jaimovich

Calcium transients elicited by IP(3) receptors upon electrical stimulation of skeletal muscle cells (slow calcium signals) are often hard to visualize due to their relatively small amplitude compared to the large transient originated from ryanodine receptors associated to excitation-contraction coupling. The study of slow calcium transients, however, is relevant due to their function in regulation of muscle gene expression and in the process of excitation-transcription coupling. Discussed here are the procedures used to record slow calcium signals from both cultured mouse myotubes and from cultured adult skeletal muscle fibers.

Collaboration


Dive into the Mariana Casas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose E. Galgani

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge