Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana De Niz is active.

Publication


Featured researches published by Mariana De Niz.


Autophagy | 2015

Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms

Monica Prado; Nina Eickel; Mariana De Niz; Anna Heitmann; Carolina Agop-Nersesian; Rahel Wacker; Jacqueline Schmuckli-Maurer; Reto Caldelari; Chris J. Janse; Shahid M. Khan; Jürgen May; Christian G. Meyer; Volker Heussler

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.


Journal of Immunology | 2013

Apoptosis-Associated Speck–like Protein Containing a Caspase Recruitment Domain Inflammasomes Mediate IL-1β Response and Host Resistance to Trypanosoma cruzi Infection

Grace Kelly Silva; Renata Sesti Costa; Tatiana N. Silveira; Braulia Costa Caetano; Catarina V. Horta; Fredy R. S. Gutierrez; Paulo Marcos da Matta Guedes; Warrison A. Andrade; Mariana De Niz; Ricardo T. Gazzinelli; Dario S. Zamboni; João Santana da Silva

The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain–like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1β and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck–like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain–containing 3 (NLRP3), but not NLR family, caspase recruitment domain–containing 4 or NLR family, pyrin domain–containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1β. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K+ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC−/− and caspase-1−/− infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.


Cell | 2017

Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum

Nicolas M. B. Brancucci; Joseph P. Gerdt; Chengqi Wang; Mariana De Niz; Nisha Philip; Swamy R. Adapa; Min Zhang; Eva Hitz; Igor Niederwieser; Sylwia D. Boltryk; Marie-Claude Laffitte; Martha A. Clark; Christof Grüring; Deepali Ravel; Alexandra Blancke Soares; Allison Demas; Selina Bopp; Belén Rubio-Ruiz; Ana Conejo-García; Dyann F. Wirth; Edyta Gendaszewska-Darmach; Manoj T. Duraisingh; John H. Adams; Till S. Voss; Andrew P. Waters; Rays H. Y. Jiang; Jon Clardy; Matthias Marti

Summary Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.


Nature Communications | 2016

The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

Mariana De Niz; Ann-Katrin Ullrich; Arlett Heiber; Alexandra Blancke Soares; Christian Pick; Ruth Lyck; Derya Keller; Gesine Kaiser; Monica Prado; Sven Flemming; Hernando A. del Portillo; Chris J. Janse; Volker Heussler; Tobias Spielmann

Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.


Nature Reviews Microbiology | 2017

Progress in imaging methods: insights gained into Plasmodium biology

Mariana De Niz; Paul-Christian Burda; Gesine Kaiser; Hernando A. del Portillo; Tobias Spielmann; Freddy Frischknecht; Volker Heussler

Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurers clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.


Scientific Reports | 2017

Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of Plasmodium berghei.

Carolina Agop-Nersesian; Mariana De Niz; Livia Niklaus; Monica Prado; Nina Eickel; Volker Heussler

The hepatic stage of the malaria parasite Plasmodium is accompanied by an autophagy-mediated host response directly targeting the parasitophorous vacuolar membrane (PVM) harbouring the parasite. Removal of the PVM-associated autophagic proteins such as ubiquitin, p62, and LC3 correlates with parasite survival. Yet, it is unclear how Plasmodium avoids the deleterious effects of selective autophagy. Here we show that parasites trap host autophagic factors in the tubovesicular network (TVN), an expansion of the PVM into the host cytoplasm. In proliferating parasites, PVM-associated LC3 becomes immediately redirected into the TVN, where it accumulates distally from the parasite’s replicative centre. Finally, the host factors are shed as vesicles into the host cytoplasm. This strategy may enable the parasite to balance the benefits of the enhanced host catabolic activity with the risk of being eliminated by the cell’s cytosolic immune defence.


Molecular Microbiology | 2016

High resolution microscopy reveals an unusual architecture of the Plasmodium berghei endoplasmic reticulum.

Gesine Kaiser; Mariana De Niz; Benoît Zuber; Paul-Christian Burda; Benoît Kornmann; Volker Heussler; Rebecca R. Stanway

To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasites ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block‐face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.


Malaria Journal | 2016

An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle.

Mariana De Niz; Rebecca R. Stanway; Rahel Wacker; Derya Keller; Volker Heussler

BackgroundBioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work.ResultsNanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo.ConclusionsPbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.


PLOS ONE | 2015

In vivo and in vitro characterization of a Plasmodium liver stage-specific promoter.

Mariana De Niz; Susanne Helm; Sebastian Horstmann; Takeshi Annoura; Hernando A. del Portillo; Shahid M. Khan; Volker Heussler

Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems.


Science Advances | 2018

Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow.

Mariana De Niz; Elamaran Meibalan; Pedro Mejia; Siyuan Ma; Nicolas M. B. Brancucci; Carolina Agop-Nersesian; Rebecca Mandt; Priscilla Ngotho; Katie R. Hughes; Andrew P. Waters; Curtis Huttenhower; James R. Mitchell; Roberta Martinelli; Friedrich Frischknecht; Karl B. Seydel; Terrie E. Taylor; Danny A. Milner; Volker Heussler; Matthias Marti

In vivo visualization of Plasmodium parasites reveals sublocalization, deformability, and mobility of gametocytes in the bone marrow. Transmission of Plasmodium parasites to the mosquito requires the formation and development of gametocytes. Studies in infected humans have shown that only the most mature forms of Plasmodium falciparum gametocytes are present in circulation, whereas immature forms accumulate in the hematopoietic environment of the bone marrow. We used the rodent model Plasmodium berghei to study gametocyte behavior through time under physiological conditions. Intravital microscopy demonstrated preferential homing of early gametocyte forms across the intact vascular barrier of the bone marrow and the spleen early during infection and subsequent development in the extravascular environment. During the acute phase of infection, we observed vascular leakage resulting in further parasite accumulation in this environment. Mature gametocytes showed high deformability and were found entering and exiting the intact vascular barrier. We suggest that extravascular gametocyte localization and mobility are essential for gametocytogenesis and transmission of Plasmodium to the mosquito.

Collaboration


Dive into the Mariana De Niz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris J. Janse

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shahid M. Khan

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Monica Prado

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge