Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana G. Rosca is active.

Publication


Featured researches published by Mariana G. Rosca.


Cardiovascular Research | 2008

Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation

Mariana G. Rosca; Edwin J. Vazquez; Janos Kerner; William Parland; Margaret P. Chandler; William C. Stanley; Hani N. Sabbah; Charles L. Hoppel

Aims Mitochondrial dysfunction is a major factor in heart failure (HF). A pronounced variability of mitochondrial electron transport chain (ETC) defects is reported to occur in severe acquired cardiomyopathies without a consistent trend for depressed activity or expression. The aim of this study was to define the defect in the integrative function of cardiac mitochondria in coronary microembolization-induced HF. Methods and results Studies were performed in the canine coronary microembolization-induced HF model of moderate severity. Oxidative phosphorylation was assessed as the integrative function of mitochondria, using a comprehensive variety of substrates in order to investigate mitochondrial membrane transport, dehydrogenase activity and electron-transport coupled to ATP synthesis. The supramolecular organization of the mitochondrial ETC also was investigated by native gel electrophoresis. We found a dramatic decrease in ADP-stimulated respiration that was not relieved by an uncoupler. Moreover, the ADP/O ratio was normal, indicating no defect in the phosphorylation apparatus. The data point to a defect in oxidative phosphorylation within the ETC. However, the individual activities of ETC complexes were normal. The amount of the supercomplex consisting of complex I/complex III dimer/complex IV, the major form of respirasome considered essential for oxidative phosphorylation, was decreased. Conclusions We propose that the mitochondrial defect lies in the supermolecular assembly rather than in the individual components of the ETC.


Heart Failure Reviews | 2013

Mitochondrial dysfunction in heart failure

Mariana G. Rosca; Charles L. Hoppel

Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin–angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.


Diabetes | 2012

Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes

Mariana G. Rosca; Edwin J. Vazquez; Qun Chen; Janos Kerner; Timothy S. Kern; Charles L. Hoppel

Mitochondrial reactive oxygen species (ROS) cause kidney damage in diabetes. We investigated the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. In diabetic mitochondria, the increased amounts and activities of selective fatty acid oxidation enzymes is associated with increased oxidative phosphorylation and net ROS production with fatty acid substrates (by 40% and 30%, respectively), whereas pyruvate oxidation is decreased and pyruvate-supported ROS production is unchanged. Oxidation of substrates that donate electrons at specific sites in the electron transport chain (ETC) is unchanged. The increased maximal production of ROS with fatty acid oxidation is not affected by limiting the electron flow from complex I into complex III. The maximal capacity of the ubiquinol oxidation site in complex III in generating ROS does not differ between the control and diabetic mitochondria. In conclusion, the mitochondrial ETC is neither the target nor the site of ROS production in kidney tubule mitochondria in short-term diabetes. Mitochondrial fatty acid oxidation is the source of the increased net ROS production, and the site of electron leakage is located proximal to coenzyme Q at the electron transfer flavoprotein that shuttles electrons from acyl-CoA dehydrogenases to coenzyme Q.


Advanced Drug Delivery Reviews | 2009

Mitochondria in the elderly: Is acetylcarnitine a rejuvenator?

Mariana G. Rosca; Hélène Lemieux; Charles L. Hoppel

Endogenous acetylcarnitine is an indicator of acetyl-CoA synthesized by multiple metabolic pathways involving carbohydrates, amino acids, fatty acids, sterols, and ketone bodies, and utilized mainly by the tricarboxylic acid cycle. Acetylcarnitine supplementation has beneficial effects in elderly animals and humans, including restoration of mitochondrial content and function. These effects appear to be dose-dependent and occur even after short-term therapy. In order to set the stage for understanding the mechanism of action of acetylcarnitine, we review the metabolism and role of this compound. We suggest that acetylation of mitochondrial proteins leads to a specific increase in mitochondrial gene expression and mitochondrial protein synthesis. In the aged rat heart, this effect is translated to increased cytochrome b content, restoration of complex III activity, and oxidative phosphorylation, resulting in amelioration of the age-related mitochondrial defect.


Biochimica et Biophysica Acta | 2011

Cardiac mitochondria in heart failure: Normal cardiolipin profile and increased threonine phosphorylation of complex IV

Mariana G. Rosca; Paul E. Minkler; Charles L. Hoppel

Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation

Saptarsi M. Haldar; Darwin Jeyaraj; Priti Anand; Han Zhu; Yuan Lu; Domenick A. Prosdocimo; Betty L. Eapen; Daiji Kawanami; Mitsuharu Okutsu; Leticia Brotto; Hisashi Fujioka; Janos Kerner; Mariana G. Rosca; Owen P. McGuinness; Rod J. Snow; Aaron P. Russell; Anthony N. Gerber; Xiaodong Bai; Zhen Yan; Thomas M. Nosek; Marco Brotto; Charles L. Hoppel; Mukesh K. Jain

The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids.


Journal of Bioenergetics and Biomembranes | 2009

New aspects of impaired mitochondrial function in heart failure.

Mariana G. Rosca; Charles L. Hoppel

This minireview focuses on the impairment of function in cardiac mitochondria in heart failure (HF). It is generally accepted that chronic energy starvation leads to cardiac mechanical dysfunction in HF. Mitochondria are the primary ATP generator for the heart. Current evidence suggests that the assembly of the electron transport chain (ETC) into respirasomes provides structural support for mitochondrial oxidative phosphorylation by facilitating electron channeling and perhaps by preventing electron leak and superoxide production. Defects have been purported to occur in the individual ETC complexes or components of the phosphorylation apparatus in HF, but these defects have not been linked to impaired mitochondrial function. Moreover, studies that reported decreased mitochondrial oxidative phosphorylation in HF did not identify the site of the defect. We propose a sequential mechanistic pathway in which the decrease in functional respirasomes in HF is the primary event causing decreased oxidative phosphorylation and increased reactive oxygen species production, leading to a progressive decrease in cardiac performance.


Journal of Biological Chemistry | 2014

Kruppel-like Factor 15 Is a Critical Regulator of Cardiac Lipid Metabolism

Domenick A. Prosdocimo; Priti Anand; Xudong Liao; Han Zhu; Shamanthika Shelkay; Pedro Artero-Calderon; Lilei Zhang; Jacob Kirsh; D'Vesharronne Moore; Mariana G. Rosca; Edwin J. Vazquez; Janos Kerner; Kemal Marc Akat; Zev Williams; Jihe Zhao; Hisashi Fujioka; Thomas Tuschl; Xiaodong Bai; P. Christian Schulze; Charles L. Hoppel; Mukesh K. Jain; Saptarsi M. Haldar

Background: Metabolic homeostasis is central to normal cardiac function. The molecular mechanisms underlying metabolic plasticity in the heart remain poorly understood. Results: Kruppel-like factor 15 (KLF15) is a direct and independent regulator of myocardial lipid flux. Conclusion: KLF15 is a core component of the transcriptional circuitry that governs cardiac metabolism. Significance: This work is the first to implicate the KLF transcription factor family in cardiac metabolism. The mammalian heart, the bodys largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.


Journal of Molecular and Cellular Cardiology | 2009

Altered expression of the adenine nucleotide translocase isoforms and decreased ATP synthase activity in skeletal muscle mitochondria in heart failure.

Mariana G. Rosca; Isidore A. Okere; Naveen Sharma; William C. Stanley; Fabio A. Recchia; Charles L. Hoppel

Exercise intolerance is a component of heart failure (HF) syndrome. We aimed to identify the defects in skeletal muscle mitochondria which may contribute to the development of peripheral myopathy. Subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated from gastrocnemius muscle of control dogs (N=5) and dogs with pacing-induced HF (N=5). The measurement of integrated mitochondrial function (oxidative phosphorylation) and of individual activities of mitochondrial electron transport chain (ETC) complexes was complemented with the assessment of the amount and activity of the components of the phosphorylation apparatus. Both populations of skeletal muscle mitochondria isolated from HF have significantly decreased ADP-stimulated (state 3) respiratory rates with complex I, II and III substrates. The decrease in respiratory rates of skeletal muscle SSM are neither relieved upon collapsing the mitochondrial potential with an uncoupler nor increased in the presence of maximal ADP concentrations showing a defect in the ETC, which needs further investigation. In contrast, respiratory rates of skeletal muscle IFM from HF were relieved with the uncoupler and partially improved in the presence of maximal ADP concentrations. In these IFM, alterations in the phosphorylation apparatus were detected with a decreased amount of ANT isoform 2 and increased amount of isoform 1. The IFM dysfunction may be explained by this shift in ANT isoforms. In conclusion, pacing-induced HF causes a decrease in the oxidative phosphorylation of skeletal muscle mitochondria due to defects in the ETC and phosphorylation apparatus.


Redox biology | 2013

Aging-dependent changes in rat heart mitochondrial glutaredoxins—Implications for redox regulation

Xing Huang Gao; Suparna Qanungo; Harish V. Pai; David W. Starke; Kelly M. Steller; Hisashi Fujioka; Edward J. Lesnefsky; Janos Kerner; Mariana G. Rosca; Charles L. Hoppel; John J. Mieyal

Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50–60% in the IMS, but Grx2 is increased by 1.4–2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron–sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron–sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ.

Collaboration


Dive into the Mariana G. Rosca's collaboration.

Top Co-Authors

Avatar

Charles L. Hoppel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Edwin J. Vazquez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Janos Kerner

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hisashi Fujioka

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Timothy S. Kern

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Tandler

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Miriam F. Weiss

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Vincent M. Monnier

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mark L. Cohen

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge