Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana Ozello Baratti is active.

Publication


Featured researches published by Mariana Ozello Baratti.


Journal of Biophotonics | 2014

Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer

Javier Adur; Vitor B. Pelegati; André A. de Thomaz; Mariana Ozello Baratti; Liliana Andrade; Hernandes F. Carvalho; Fátima Böttcher-Luiz; Carlos L. Cesar

In this study we showed that second-harmonic generation (SHG) microscopy combined with precise methods for images evaluation can be used to detect structural changes in the human ovarian stroma. Using a set of scoring methods (alignment of collagen fibers, anisotropy, and correlation), we found significant differences in the distribution and organization of collagen fibers in the stroma component of serous, mucinous, endometrioid and mixed ovarian tumors as compared with normal ovary tissue. This methodology was capable to differentiate between cancerous and healthy tissue, with clear cut distinction between normal, benign, borderline, and malignant tumors of serous type. Our results indicated that the combination of different image-analysis approaches presented here represent a powerful tool to investigate collagen organization and extracellular matrix remodeling in ovarian tumors.


PLOS ONE | 2012

Optical Biomarkers of Serous and Mucinous Human Ovarian Tumor Assessed with Nonlinear Optics Microscopies

Javier Adur; Vitor B. Pelegati; André A. de Thomaz; Mariana Ozello Baratti; D. B. Almeida; Liliana Andrade; Fátima Böttcher-Luiz; Hernandes F. Carvalho; Carlos L. Cesar

Background Nonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression. Methodology/Principal Findings We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. Conclusions/Significance NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.


PLOS ONE | 2014

CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12.

Rita de Cássia Carvalho Melo; Ana Leda Longhini; Carolina L. Bigarella; Mariana Ozello Baratti; Fabiola Traina; Patricia Favaro; Paula de Melo Campos; Sara Teresinha Olalla Saad

Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7 (CXC chemokine receptor 7), has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine receptor 3). In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once occupied by normal hematopoietic stem cells.


Microscopy Research and Technique | 2012

Harmonic Optical Microscopy and Fluorescence Lifetime Imaging Platform for Multimodal Imaging

Vitor B. Pelegati; Javier Adur; André A. de Thomaz; D. B. Almeida; Mariana Ozello Baratti; Liliana Andrade; Fátima Böttcher-Luiz; Carlos L. Cesar

In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two‐photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy‐to‐operate platform capable to perform two‐photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Microsc. Res. Tech. 2012.


Biochemical and Biophysical Research Communications | 2008

ARHGAP21 associates with FAK and PKCζ and is redistributed after cardiac pressure overload

Luciene Rodrigues de Oliveira Borges; Carolina L. Bigarella; Mariana Ozello Baratti; Daniella P. Crosara-Alberto; Paulo Pinto Joazeiro; Kleber G. Franchini; Fernando Ferreira Costa; Sara Teresinha Olalla Saad

ARHGAP21 is highly expressed in the heart, which demonstrates activity over Cdc42 and interacts with proteins of the cytoskeleton and adherent junctions. The main cause of cardiac hypertrophy is mechanical stimulus; therefore we analyzed ARHGAP21 expression after acute mechanical stress in the myocardium and its association with FAK and PKCzeta. We demonstrated that ARHGAP21 is relocated to Z-lines and costameres after pressure overload, and interacts with PKCzeta and FAK in control rats (sham), rats submitted to aortic clamping and spontaneously hypertensive rats (SHR). Co-transfection using ARHGAP21 and PKCzeta constructions demonstrated that ARHGAP21 associates with PKCzeta-GST and endogenous FAK. Pulldown assay showed that ARHGAP21 binds to the C-terminal region of FAK. Moreover, ARHGAP21 binds to PKCzeta phosphorylated on Thr410 in sham and SHR. However, ARHGAP21 only binds to FAK phosphorylated on Tyr925 of SHR. Additionally, PKCzeta is phosphorylated by mechanical stimuli. These results suggest that ARHGAP21 may act as a signaling or scaffold protein of FAK and PKCzeta signaling pathways, developing an important function during cardiac stress.


Journal of Eukaryotic Microbiology | 2014

The Cratylia mollis seed lectin induces membrane permeability transition in isolated rat liver mitochondria and a cyclosporine a-insensitive permeability transition in Trypanosoma cruzi mitochondria.

Mariana P. Fernandes; Ana Catarina R. Leite; Flávia F. B. Araújo; Sara Teresinha Olalla Saad; Mariana Ozello Baratti; Maria Tereza dos Santos Correia; Luana Cassandra Breitenbach Barroso Coelho; Fernanda Ramos Gadelha; Anibal E. Vercesi

Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca2+ and mitochondrial dysfunction due to matrix Ca2+ overload. In order to investigate the mechanism of Ca2+‐induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca2+ was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca2+ this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca2+ dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA‐insensitive MPT in T. cruzi mitochondria.


BMC Medical Genomics | 2010

Identification of protein-coding and non-coding RNA expression profiles in CD34+and in stromal cells in refractory anemia with ringed sideroblasts

Mariana Ozello Baratti; Yuri B. Moreira; Fabiola Traina; Fernando Ferreira Costa; Sergio Verjovski-Almeida; Sara T. Olalla-Saad

BackgroundMyelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease.MethodsIn this study, gene expression profiles of CD34+ cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts.ResultsIn CD34+ cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts.ConclusionsThese results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34+ cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.


Journal of Photochemistry and Photobiology B-biology | 2009

In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells

André Romero da Silva; Natalia Mayumi Inada; Daniel Rettori; Mariana Ozello Baratti; Anibal E. Vercesi; Renato A. Jorge

In(III)-meso-tetraphenylporphyrin (InTPP) was encapsulated into nanoparticles (smaller than 200 nm) of poly(d,l-lactide-co-glycolide) (PLGA) using the emulsification-evaporation technique. The photodynamic efficacy of InTPP-loaded nanoparticles and its cellular uptake was investigated with LNCaP prostate tumour cells, in comparison with the free InTPP. The effects of incubation time (1-3h), drug concentration (1.8-7.7 micromol/L) and incident light dose (15-45 J/cm(2)) with both encapsulated and free InTPP were studied. The type of cell death induced by the photochemical process using both encapsulated and free InTPP was also investigated. Cell viability was reduced more significantly with increasing values of these effects for InTPP-loaded nanoparticles than with the free drug. The cellular death induced by both encapsulated and free InTPP was preponderantly apoptotic. Confocal laser scanning microscopy data showed that the InTPP-loaded nanoparticles, as well free InTPP, were localized in the cells, and always in the perinuclear region. Encapsulated InTPP was measured by the intensity of fluorescence intensity of cell extracts and was three times more internalized into the cells than was the free InTPP. Electron paramagnetic resonance experiments corroborated the participation of singlet oxygen in the photocytotoxic effect of nanoparticles loaded with InTPP.


European Journal of Haematology | 2005

Band 3Tambaú: a de novo mutation in the AE1 gene associated with hereditary spherocytosis. Implications for anion exchange and insertion into the red blood cell membrane

Paulo Roberto Moura Lima; Mariana Ozello Baratti; Maria Lucia Chiattone; Fernando Ferreira Costa; Sara Teresinha Olalla Saad

Abstract:  Hereditary spherocytosis (HS) is attributed to red blood cell membrane protein defects, caused by mutations in ankyrin, spectrin, band 3 and protein 4.2. In this study, the presence of band 3 mutations was investigated in a patient presenting mild HS and band 3 deficiency. Using single strand conformation polymorphism analysis, a shift in exon 16 of the band 3 gene was found. DNA sequencing revealed a point mutation 2102 T>C, changing methionine at position 663 to lysine. The M663K substitution was not found in either the parents or in the siblings, and the restriction fragment length polymorphism analysis of 100 alleles from a random Brazilian population did not reveal this mutation, suggesting that this gene defect is more likely to be a de novo mutation, causing HS. Flow cytometry of eosin‐5‐isothiocyanate (EITC)‐labelled erythrocytes showed, in the patient, 54% of band 3 protein content vs. 78% based on the sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) analysis, suggesting that flow cytometry is a more sensitive method and may be used as a diagnostic tool in membrane disorders related to band 3 deficiency. The characterisation of novel AE1 mutations is helpful to improve the understanding of the role of band 3 protein in cell physiology.


Journal of the Brazilian Chemical Society | 2010

Drug release from microspheres and nanospheres of poly(lactide-co-glycolide) without sphere separation from the release medium

André Romero da Silva; M.Elisabete D Zaniquelli; Mariana Ozello Baratti; Renato A. Jorge

A new technique using diffuse reflectance spectroscopy was developed that enables the monitoring of encapsulated drug release without particle separation from the assayed medium. Studies of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) (InTPP) release from microspheres and nanospheres of poly(lactide-co-glycolide) (PLGA) were performed using this new technique. The release of InTPP was biphasic, with an initial fast release followed by a second slower release. Mathematical models applied to the release profiles showed that the release of InTPP from the nanospheres was controlled by diffusion, which is to be expected for a substance homogeneously dispersed within the spheres. However, due to the large size distribution of the microspheres loaded with InTPP, the release profiles were irregular, hampering an adequate fit to mathematical models. Confocal analysis of microparticles showed that the InTPP appeared to be homogenously distributed within the microspheres and no preferential distribution of InTPP towards the interior or towards the surface of the spheres was observed.

Collaboration


Dive into the Mariana Ozello Baratti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos L. Cesar

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Hernandes F. Carvalho

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Fabiola Traina

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

V. B. Pelegati

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Paula de Melo Campos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

J. Adur

National University of Entre Ríos

View shared research outputs
Top Co-Authors

Avatar

André A. de Thomaz

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Bruna Palodetto

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge