Mariana Roesch-Ely
University of Caxias do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariana Roesch-Ely.
Food and Chemical Toxicology | 2013
Caroline Olivieri da Silva Frozza; Charlene Silvestrin Celi Garcia; Gabriela Gambato; Márcia O. Souza; Mirian Salvador; Sidnei Moura; Francine Ferreira Padilha; Fabiana Kömmling Seixas; Tiago Collares; Sibele Borsuk; Odir A. Dellagostin; Joao Antonio Pegas Henriques; Mariana Roesch-Ely
Propolis is known for a long time for its health benefits and biological activities. Here, the red variety from the northeast of Brazil was chemically analyzed and extracts were investigated regarding their antioxidant and antitumor activity. Hydroalcoholic extracts, obtained from the red propolis, revealed polyphenol content, 2,2-diphenyl-1-picrylhydrazyl scavenging potential and enzymatic activities for catalase-like and superoxide dismutase-like. Cytotoxic activity was evaluated for human laryngeal epidermoid carcinoma cell (Hep-2), human cervical adenocarcinoma (HeLa) and human normal epithelial embryonic kidney (Hek-293). Survival analysis for non-tumor cell line showed greater IC50 compared to tumor cell lines, suggesting an increased sensitivity that may correlate with the higher proliferative index of the tumor vs. normal cells. Our results indicate that the Brazilian red propolis is capable of inhibiting cancer cell growth and constitutes an excellent source of antioxidant and antitumor natural agent.
Nutrition Research | 2013
T.C. Finimundy; Gabriela Gambato; R. Fontana; Marli Camassola; Mirian Salvador; Sidnei Moura; Jochen Hess; Joao Antonio Pegas Henriques; Aldo José Pinheiro Dillon; Mariana Roesch-Ely
Mushroom extracts are increasingly sold as dietary supplements because of several of their properties, including the enhancement of immune function and antitumor activity. We hypothesized that soluble polar substances present in mushroom extracts may show antioxidant and anticancer properties. This report shows that Brazilian aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exert inhibitory activity against the proliferation of the human tumor cell lines laryngeal carcinoma (Hep-2) and cervical adenocarcinoma (HeLa). Cell viability was determined after using 3 different temperatures (4°C, 22°C, and 50°C) for mushroom extraction. Biochemical assays carried out in parallel indicated higher amounts of polyphenols in the L edodes extracts at all extraction temperatures investigated. The scavenging ability of the 2,2-diphenyl-1-picrylhydrazyl radical showed higher activity for L edodes extracts. Superoxide dismutase-like activity showed no statistically significant difference among the groups for the 2 tested extracts, and catalase-like activity was increased with the L edodes extracts at 4°C. The results for the cytotoxic activity from P sajor-caju extracts at 22°C revealed the half maximal inhibitory concentration values of 0.64% ± 0.02% for Hep-2 and 0.25% ± 0.02% for HeLa. A higher cytotoxic activity was found for the L edodes extract at 22°C, with half maximal inhibitory concentration values of 0.78% ± 0.02% for Hep-2 and 0.57% ± 0.01% for HeLa. Substantial morphological modifications in cells were confirmed by Giemsa staining after treatment with either extract, suggesting inhibition of proliferation and induction of apoptosis with increasing extract concentrations. These results indicate that the aqueous extracts of Brazilian L edodes and P sajor-caju mushrooms are potential sources of antioxidant and anticancer compounds. However, further investigations are needed to exploit their valuable therapeutic uses and to elucidate their modes of action.
Evidence-based Complementary and Alternative Medicine | 2014
Karine Rech Begnini; Priscila Marques Moura de Leon; Helena Thurow; Eduarda Schultze; Vinicius Farias Campos; Fernanda M. Rodrigues; Sibele Borsuk; Odir A. Dellagostin; Lucielli Savegnago; Mariana Roesch-Ely; Sidnei Moura; Francine Ferreira Padilha; Tiago Collares; João Antonio Pêgas Henriques; Fabiana Kömmling Seixas
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Applied Microbiology and Biotechnology | 2016
Caroline Menti; Joao Antonio Pegas Henriques; F.P. Missell; Mariana Roesch-Ely
This work describes the design and development process of an immunosensor. The creation of such devices goes through various steps, which complement each other, and choosing an efficient immobilization method that binds to a specific target is essential to achieve satisfactory diagnostic results. In this perspective, the emphasis here is on developing biosensors based on binding antigens/antibodies on particular surfaces of magneto-elastic sensors. Different aspects leading to the improvement of these sensors, such as the antibody structure, the chemical functionalization of the surface, and cross-linking antibody reticulation were summarized and discussed. This paper deals with the progress of magneto-elastic immunosensors to detect bacterial pathogens and associated toxins. Biologically modified surface characterization methods are further considered. Thus, research opportunities and trends of future development in these areas are finally discussed.
Food and Chemical Toxicology | 2014
Caroline Olivieri da Silva Frozza; Tanara da Silva Ribeiro; Gabriela Gambato; Caroline Menti; Sidnei Moura; Paulo Marcos Pinto; Charley Christian Staats; Francine Ferreira Padilha; Karine Rech Begnini; Priscila Marques Moura de Leon; Sibele Borsuk; Lucielli Savegnago; Odir A. Dellagostin; Tiago Collares; Fabiana Kömmling Seixas; Joao Antonio Pegas Henriques; Mariana Roesch-Ely
Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.
Materials Science and Engineering: C | 2016
A.L. Possan; C. Menti; M. Beltrami; A.D. Santos; Mariana Roesch-Ely; Frank P. Missell
Escherichia coli are bacteria that must be controlled in the food industry and the hospital sector. Magnetoelastic biosensors offer the promise of rapid identification of these and other harmful antigens. In this work, strips of amorphous Metglas 2826MB3 were cut to size (5 mm × 1 mm) with a microdicing saw and were then coated with thin layers of Cr and Au, as verified by Rutherford backscattering spectroscopy (RBS). Several sensor surfaces were studied: 1) as-cast strip, wheel side; 2) as-cast strip, free surface; and 3) thinned and polished surface. A layer of cystamine was applied to the Au-covered magnetoelastic substrate, forming a self-assembledmonolayer (SAM), followed by antibodies, using a modified Hermanson protocol. The cystamine layer growth was verified by Fourier transform infrared spectroscopy (FTIR) and scanning electronmicroscopy (SEM). The biosensors were exposed to solutions of bacteria and the resonant frequency of the sensors was measured with an impedance analyzer for times up to 100 min. Reductions in the resonant frequency, corresponding to bacteria capture, were measured after optimizing the signal amplitude. For times up to 40 min, high capture rates were observed and thereafter saturation occurred. Saturation values of the frequency shifts were compared with the number of bacteria observed on the sensor using fluorescence microscopy. Parameters associated with capture kinetics were studied for different sensor surfaces. The rough surfaces were found to show a faster response, while the thinned and polished sensors showed the largest frequency shift.
Aquatic Toxicology | 2016
Francine Girardello; Camila Custódio Leite; Izabel Vianna Villela; Miriana da Silva Machado; André Luiz Mendes Juchem; Mariana Roesch-Ely; Andreia Neves Fernandes; Mirian Salvador; João Antonio Pêgas Henriques
The widespread use of titanium dioxide nanoparticles (TiO2-NP) in consumer products is the cause of its appearance in wastewater and effluents, reaching the aquatic environment. The evaluation of the biological impact of TiO2-NP and the need to understand its ecotoxicological impact to the aquatic ecosystem are of major concern. Bivalve mollusks may represent a target group for nanoparticle toxicity. Limnoperna fortunei (golden mussel), a freshwater bivalve organism that has been employed in biomonitoring environmental conditions. Comet assay, micronucleus test and oxidative damage to lipids and proteins were performed after the golden mussel was exposed to TiO2-NP (1, 5, 10 and 50μgmL(-1)). The results demonstrate that TiO2-NP can damage the DNA of haemocytes after 2h of exposure and the genotoxic activity significantly increased after 4h exposure to TiO2-NP, at all the TiO2-NP concentrations. TiO2-NP was ineffective in causing mutagenicity in the haemolymph cells of golden mussel. The increase in the lipid peroxidation levels and carbonyl proteins after the exposure to TiO2-NP indicates the induction of oxidative stress at 2h exposure with similar results to all TiO2-NP concentrations, but these effects did not occur at 4h exposure. These results demonstrated that, although TiO2-NP is not mutagenic to golden mussel, it does induce DNA damage and oxidative stress in these organisms.
Green Chemistry Letters and Reviews | 2014
Bruna S. Pacheco; Camila F.P. Nunes; Caroline T. Rockembach; Pablo Bertelli; Marcia F. Mesko; Mariana Roesch-Ely; Sidnei Moura; Claudio M. P. Pereira
The present work describes the efficient ultrasound-assisted synthesis of saturated aliphatic esters from synthetic aliphatic acids in methanol or in ethanol, using p-toluenesulfonic acid as a catalyst. The esters were isolated in good yields after short reaction times under mild conditions. The compounds were analyzed by high resolution mass spectrometry (HRMS), which give a fragmentations pathway common for these molecules.
Phytomedicine | 2013
Luciane Corbellini Rufatto; Tiane Cristine Finimundy; Mariana Roesch-Ely; Sidnei Moura
Cancer is the second major cause of mortality worldwide, losing only to cardiovascular disease. Nowadays, around 50% of antineoplastic drugs were discovered and isolated by indications of plants in folk medicine. In Brazilian flora there are many species of plants which have great therapeutic importance, highlighting the Mikania laevigata (Asteraceae) that has been used for their valuable properties, especially in the respiratory tract. In the present study, the compounds of M. laevigata extracts were characterized by High Resolution Mass Spectrometry (HRMS) and Gas Chromatography with Mass analysis (GC/MS-EI). Therefore, the presence of some compounds with promising biological properties as antitumor activity was detected. Coumarin (1,2-benzopyrone) was previously reported as responsible for some biological activities of this plant species. Here, the extracts were evaluated by their cytotoxic activity against tumor (Hep-2, HeLa) and non tumor (MRC-5) cell lines, presenting significant inhibitory activity of cell growth in all extracts analyzed, chloroform, ethyl acetate, hexane, ethanol, which is related to its chemical composition. From the four different extracts here tested, two of them, hexane and ethanol, presented a clear selectivity against both tumor cells lines investigated. This can be explained by variances and increase of phenolic compounds in the ethanol fraction and an association of molecules with coumarin found in the hexane fraction.
Colloids and Surfaces B: Biointerfaces | 2016
C. Menti; M. Beltrami; A.L. Possan; S.T. Martins; J.A.P. Henriques; A.D. Santos; F.P. Missell; Mariana Roesch-Ely
Magneto-elastic materials (ME) have important advantages when applied as biosensors due to the possibility of wireless monitoring. Commercial Metglas 2826MB3™ (FeNiMoB) is widely used, however sensor stabilization is an important factor for biosensor performance. This study compared the effects of biocompatibility and degradation of the Metglas 2826MB3™ alloy, covered or not with a gold layer, when in contact with cell culture medium. Strips of amorphous Metglas 2826MB3™ were cut and coated with thin layers of Cr and Au, as verified by Rutherford Backscattering Spectroscopy (RBS). Using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), the presence of metals in the culture medium was quantitatively determined for up to seven days after alloy exposure. Biocompatibility of fibroblast Chinese Hamster Ovary (CHO) cultures was tested and cytotoxicity parameters were investigated by indirect means of reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) at 1, 2 and 7 days. Cell death was further evaluated through in situ analysis using Acridine Orange/Ethidium Bromide (AO/EB) staining and images were processed with ImageJ software. Ions from Metglas(®) 2826MB3™ induced a degradation process in living organisms. The cytotoxicity assay showed a decrease in the percentage of live cells compared to control for the ME strip not coated with gold. AO/EB in situ staining revealed that most of the cells grown on top of the gold-covered sensor presented a normal morphology (85.46%). Covering ME sensors with a gold coating improved their effectiveness by generating protection of the transducer by reducing the release of ions and promoting a significant cell survival.