Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariane R. Cardoso is active.

Publication


Featured researches published by Mariane R. Cardoso.


Neurochemistry International | 2008

Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression

Gislaine T. Rezin; Mariane R. Cardoso; Cinara L. Gonçalves; Giselli Scaini; Daiane B. Fraga; Rafael E. Riegel; Clarissa M. Comim; João Quevedo; Emilio L. Streck

Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.


Mitochondrion | 2008

Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model.

Paula H. Zapelini; Gislaine T. Rezin; Mariane R. Cardoso; Cristiane Ritter; Fábio Klamt; José Cláudio Fonseca Moreira; Emilio L. Streck; Felipe Dal-Pizzol

Evidence from the literature has demonstrated that reactive oxygen species (ROS) play an important role in the development of multiple organ failure and septic shock. In addition, mitochondrial dysfunction has been implicated in the pathogenesis of multiple organ dysfunction syndrome (MODS). The hypothesis of cytopathic hypoxia postulates that impairment in mitochondrial oxidative phosphorylation reduces aerobic adenosine triphosphate (ATP) production and potentially induces MODS. In this work, our aim was to evaluate the effects of antioxidants on oxidative damage and energy metabolism parameters in liver of rats submitted to a cecal ligation puncture (CLP) model of sepsis. We speculate that CLP induces a sequence of events that culminate with liver cells death. We propose that mitochondrial superoxide production induces mitochondrial oxidative damage, leading to mitochondrial dysfunction, swelling and release of cytochrome c. These events occur in early sepsis development, as reported in the present work. Liver cells necrosis only occurs 24 h after CLP, but all other events occur earlier (6-12 h). Moreover, we showed that antioxidants may prevent oxidative damage and mitochondrial dysfunction in liver of rats after CLP. In another set of experiments, we verified that L-NAME administration did not reverse increase of superoxide anion production, TBARS formation, protein carbonylation, mitochondrial swelling, increased serum AST or inhibition on complex IV activity caused by CLP. Considering that this drug inhibits nitric oxide synthase and that no parameter was reversed by its administration, we suggest that all the events reported in this study are not mediated by nitric oxide. In conclusion, although it is difficult to extrapolate our findings to human, it is tempting to speculate that antioxidants may be used in the future in the treatment of this disease.


Mitochondrion | 2008

Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation.

Clarissa M. Comim; Gislaine T. Rezin; Giselli Scaini; Priscila B. Di-Pietro; Mariane R. Cardoso; Fabricia Petronilho; Cristiane Ritter; Emilio L. Streck; João Quevedo; Felipe Dal-Pizzol

The mechanisms responsible to the development of brain dysfunction during sepsis are not well understood. The objective of this study is to evaluate mitochondrial respiratory chain and creatine kinase activities in the brain after cecal ligation and perforation (CLP) in rats. We performed a prospective, controlled experiment in male Wistar rats. Rats were subjected to CLP (sepsis group) with saline resuscitation (at 50mL/kg immediately and 12h after cecal ligation and perforation) or sham operation (control group). Several times (0, 6, 12, 24, 48 and 96h) after CLP six rats were killed by decapitation, and brain structures (cerebellum, hippocampus, striatum and cortex) were isolated. Mitochondrial respiratory chain and creatine kinase activity were then measured. It was observed that animals submitted to CLP presented decreased mitochondrial respiratory chain activity in complex I, but not in complex II, III and IV, 24, 48 and 96h in all analyzed structures. Activity of succinate dehydrogenase was decreased in 48 and 96h in all analyzed structures. Creatine kinase activity increased after CLP in cerebellum, hippocampus and cortex (after 0h) and striatum (after 6h). Sepsis associated brain injury may include dysfunction in the mitochondrial respiratory chain activity.


Journal of Surgical Research | 2011

Skeletal Muscle Electron Transport Chain Dysfunction After Sepsis in Rats

Bruno B. Peruchi; Fabricia Petronilho; Hugo Rojas; Larissa Constantino; Francielle Mina; Francieli Vuolo; Mariane R. Cardoso; Cinara L. Gonçalves; Gislaine T. Rezin; Emilio L. Streck; Felipe Dal-Pizzol

BACKGROUND The derangement in oxygen utilization occurring during sepsis is likely to be linked to impaired mitochondrial functioning. Skeletal muscle comprises 50%-60% of body cell mass and represents the largest organ potentially affected by systemic inflammation. Thus, we investigated whether sepsis induced by cecal ligation and puncture (CLP) modifies mitochondrial activity in respiratory and nonrespiratory skeletal muscle. MATERIALS AND METHODS Wistar rats were subjected to CLP and at different times, diaphragm and quadriceps were removed for the determination of electron transfer chain activities and mitochondrial oxidative stress. In addition, we determined diaphragm contractile strength. RESULTS In the quadriceps, 12 h after CLP we demonstrated a significant diminution on complex II-III activity. At late times (48 h after CLP), we demonstrated a decrease in the activity of all electron transfer chain complexes, which seemed to be secondary to early oxidative stress and correlates with diaphragm contractile strength. Differently from diaphragm, electron transfer chain was not decreased after sepsis and even oxidative stress was not increased at all times tested. CONCLUSION Our results suggest that quadriceps mitochondria are more resistant to sepsis-induced dysfunction.


Molecular Neurobiology | 2014

Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania.

Gislaine T. Rezin; Camila B. Furlanetto; Giselli Scaini; Samira S. Valvassori; Cinara L. Gonçalves; Gabriela K. Ferreira; Isabela C. Jeremias; Wilson R. Resende; Mariane R. Cardoso; Roger B. Varela; João Quevedo; Emilio L. Streck

Fenproporex (Fen) is converted in vivo into amphetamine, which is used to induce mania-like behaviors in animals. In the present study, we intend to present a new animal model of mania. In order to prove through face, construct, and predictive validities, we evaluated behavioral parameters (locomotor activity, stereotypy activity, and fecal boli amount) and brain energy metabolism (enzymes citrate synthase; malate dehydrogenase; succinate dehydrogenase; complexes I, II, II–III, and IV of the mitochondrial respiratory chain; and creatine kinase) in rats submitted to acute and chronic administration of fenproporex, treated with lithium (Li) and valproate (VPA). The administration of Fen increased locomotor activity and decreased the activity of Krebs cycle enzymes, mitochondrial respiratory chain complexes, and creatine kinase, in most brain structures evaluated. In addition, treatment with mood stabilizers prevented and reversed this effect. Our results are consistent with the literature that demonstrates behavioral changes and mitochondrial dysfunction caused by psychostimulants. These findings suggest that chronic administration of Fen may be a potential animal model of mania.


International Journal of Developmental Neuroscience | 2011

Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats.

Gislaine T. Rezin; Isabela C. Jeremias; Gabriela K. Ferreira; Mariane R. Cardoso; Meline O. S. Morais; Lara M. Gomes; Otaviana Martinello; Samira S. Valvassori; João Quevedo; Emilio L. Streck

Obesity is a chronic disease of multiple etiologies, including genetic, metabolic, environmental, social, and other factors. Pharmaceutical strategies in the treatment of obesity include drugs that regulate food intake, thermo genesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine‐based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine. Studies suggest that amphetamine induces neurotoxicity through generation of free radicals and mitochondrial apoptotic pathway by cytochrome c release, accompanied by a decrease of mitochondrial membrane potential. Mitochondria are intracellular organelles that play a crucial role in ATP production. Thus, in the present study we evaluated the activities of some enzymes of Krebs cycle, mitochondrial respiratory chain complexes and creatine kinase in the brain of young rats submitted to acute and chronic administration of fenproporex. In the acute administration, the animals received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or tween. In the chronic administration, the animals received a single injection daily for 14 days of fenproporex (6.25, 12.5 or 25 mg/Kg i.p.). Two hours after the last injection, the rats were sacrificed by decapitation and the brain was removed for evaluation of biochemical parameters. Our results showed that the activities of citrate synthase, malate dehydrogenase and succinate dehydrogenase were increased by acute and chronic administration of fenproporex. Complexes I, II, II–III and IV and creatine kinase activities were also increased after acute and chronic administration of the drug. Our results are consistent with others reports that showed that some psychostimulant drugs increased brain energy metabolism in young rats.


Revista Brasileira de Psiquiatria | 2013

Evaluation of Na+, K+-ATPase activity in the brain of young rats after acute administration of fenproporex

Gislaine T. Rezin; Giselli Scaini; Cinara L. Gonçalves; Gabriela K. Ferreira; Mariane R. Cardoso; Andréa G. K. Ferreira; Maira J. da Cunha; Felipe Schmitz; Roger B. Varela; João Quevedo; Angela Terezinha de Souza Wyse; Emilio L. Streck

OBJECTIVES Fenproporex is an amphetamine-based anorectic which is rapidly converted into amphetamine in vivo. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that the effects of fenproporex on brain metabolism are poorly known and that Na+, K+-ATPase is essential for normal brain function, this study sought to evaluate the effect of this drug on Na+, K+-ATPase activity in the hippocampus, hypothalamus, prefrontal cortex, and striatum of young rats. METHODS Young male Wistar rats received a single injection of fenproporex (6.25, 12.5, or 25 mg/kg intraperitoneally) or polysorbate 80 (control group). Two hours after the last injection, the rats were killed by decapitation and the brain was removed for evaluation of Na+, K+-ATPase activity. RESULTS Fenproporex decreased Na+, K+-ATPase activity in the striatum of young rats at doses of 6.25, 12.5, and 25 mg/kg and increased enzyme activity in the hypothalamus at the same doses. Na+, K+-ATPase activity was not affected in the hippocampus or prefrontal cortex. CONCLUSION Fenproporex administration decreased Na+, K+-ATPase activity in the striatum even in low doses. However, in the hypothalamus, Na+, K+-ATPase activity was increased. Changes in this enzyme might be the result of the effects of fenproporex on neuronal excitability.


Acta Neuropsychiatrica | 2012

Differential effects of escitalopram administration on metabolic parameters of cortical and subcortical brain regions of Wistar rats.

Cinara L. Gonçalves; Gislaine T. Rezin; Gabriela K. Ferreira; Isabela C. Jeremias; Mariane R. Cardoso; Milena Carvalho-Silva; Alexandra I. Zugno; João Quevedo; Emilio L. Streck

Objective: Considering that mitochondria may be drug targets and some characteristics of drug–mitochondria interactions may still be misjudged because of the difficulty in foreseeing and understanding all possible implications of the complex pathophysiology of mitochondria, our study aimed to investigate the effect of escitalopram on the activity of enzymes of mitochondrial energy metabolism. Methods: Animals received daily administration of escitalopram dissolved in saline [10 mg/kg, intraperitoneal (IP)] at 1.0 ml/kg volume for 14 days. Control rats received an equivalent volume of saline, 1.0 ml/kg (IP), for the same treatment period. Twelve hours after last injection, rats were killed by decapitation and brain areas were rapidly isolated. The samples were homogenised and the activities of mitochondrial respiratory chain complexes, some enzymes of Krebs cycle (citrate synthase, malate dehydrogenase and succinate dehydrogenase) and creatine kinase were measured. Results: We verified that chronic administration of escitalopram decreased the activities of complexes I and II–III in cerebellum, hippocampus, striatum and posterior cortex whereas prefrontal cortex was not affected. Complex II activity was decreased only in striatum without affecting prefrontal cortex, hippocampus, cerebellum and posterior cortex. However, chronic administration of escitalopram did not affect complex IV and enzymes of Krebs cycle activities as well as creatine kinase. Conclusion: In this study we showed a decrease in the activities of complexes I and II–III in most of the brain structures analysed and complex II activity was decreased only in striatum. However, it remains to be determined if mitochondrial dysfunction is rather a causal or a consequential event of abnormal signalling.


Revista Brasileira de Psiquiatria | 2014

Fluvoxamine alters the activity of energy metabolism enzymes in the brain

Gabriela K. Ferreira; Mariane R. Cardoso; Isabela C. Jeremias; Cinara L. Gonçalves; Karolina V. Freitas; Rafaela Antonini; Giselli Scaini; Gislaine T. Rezin; João Quevedo; Emilio L. Streck

OBJECTIVE Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. METHODS Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. RESULTS The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. CONCLUSIONS Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.


Acta Neuropsychiatrica | 2012

Brain energy metabolism is increased by chronic administration of bupropion

Gabriela K. Ferreira; Gislaine T. Rezin; Mariane R. Cardoso; Cinara L. Gonçalves; Lislaine S. Borges; Júlia S. Vieira; Lara M. Gomes; Alexandra I. Zugno; João Quevedo; Emilio L. Streck

Objectives: Based on the hypothesis that energy impairment may be involved in the pathophysiology of depression, we evaluated the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase (SDH), mitochondrial respiratory chain complexes I, II, II-III, IV and creatine kinase (CK) in the brain of rats submitted to chronic administration of bupropion. Methods: Animals received daily administration of bupropion dissolved in saline (10 mg/kg, intraperitoneal) at 1.0 ml/kg body weight. The rats received injections once a day for 14 days; control rats received an equivalent volume of saline. Twelve hours after the last administration, the rats were killed by decapitation and brain was rapidly removed and kept on an ice plate. The activities of the enzymes were measured in different brain areas. Results: We observed that the activities of citrate synthase and malate dehydrogenase, mithocondrial respiratory chain complexes I, II-III and IV and CK were not altered after chronic administration of bupropion. However, SDH activity was increased in the prefrontal cortex and cerebellum. In the hippocampus, cerebellum and striatum the activity of complex II was increased after chronic administration of bupropion. Conclusions: Our results demonstrated that bupropion increased some enzymes of brain energy metabolism. These findings are in accordance with other studies which showed that some antidepressants may improve energy metabolism. The present results reinforce the hypothesis that antidepressants modulate brain energy metabolism.

Collaboration


Dive into the Mariane R. Cardoso's collaboration.

Top Co-Authors

Avatar

Emilio L. Streck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Gislaine T. Rezin

Sewanee: The University of the South

View shared research outputs
Top Co-Authors

Avatar

Gabriela K. Ferreira

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Cinara L. Gonçalves

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabela C. Jeremias

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Giselli Scaini

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Samira S. Valvassori

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Felipe Dal-Pizzol

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge