Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariangela Bernardi is active.

Publication


Featured researches published by Mariangela Bernardi.


Monthly Notices of the Royal Astronomical Society | 2003

Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey

Guinevere Kauffmann; Timothy M. Heckman; Simon D. M. White; S. Charlot; Christy A. Tremonti; Jarle Brinchmann; Gustavo Bruzual; Eric W. Peng; Mark Harry Seibert; Mariangela Bernardi; Michael R. Blanton; J. Brinkmann; Francisco J. Castander; István Csabai; Masataka Fukugita; Zeljko Ivezic; Jeffrey A. Munn; Robert C. Nichol; Nikhil Padmanabhan; Aniruddha R. Thakar; David H. Weinberg; Donald G. York

We develop a new method to constrain the star formation histories, dust attenuation and stellar masses of galaxies. It is based on two stellar absorption-line indices, the 4000-A break strength and the Balmer absorption-line index Hδ A . Together, these indices allow us to constrain the mean stellar ages of galaxies and the fractional stellar mass formed in bursts over the past few Gyr. A comparison with broad-band photometry then yields estimates of dust attenuation and of stellar mass. We generate a large library of Monte Carlo realizations of different star formation histories, including starbursts of varying strength and a range of metallicities. We use this library to generate median likelihood estimates of burst mass fractions, dust attenuation strengths, stellar masses and stellar mass-to-light ratios for a sample of 122 808 galaxies drawn from the Sloan Digital Sky Survey. The typical 95 per cent confidence range in our estimated stellar masses is ′40 per cent. We study how the stellar mass-to-light ratios of galaxies vary as a function of absolute magnitude, concentration index and photometric passband and how dust attenuation varies as a function of absolute magnitude and 4000-A break strength. We also calculate how the total stellar mass of the present Universe is distributed over galaxies as a function of their mass, size, concentration, colour, burst mass fraction and surface mass density. We find that most of the stellar mass in the local Universe resides in galaxies that have, to within a factor of approximately 2, stellar masses ∼5 x 10 1 0 M O ., half-light radii ∼3 kpc and half-light surface mass densities ∼10 9 M O .kpc - 2 . The distribution of D n (4000) is strongly bimodal, showing a clear division between galaxies dominated by old stellar populations and galaxies with more recent star formation.


The Astronomical Journal | 2001

Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample

Daniel J. Eisenstein; James Annis; James E. Gunn; Alexander S. Szalay; Andrew J. Connolly; Robert C. Nichol; Neta A. Bahcall; Mariangela Bernardi; Scott Burles; Francisco J. Castander; Masataka Fukugita; David W. Hogg; Željko Ivezić; Gillian R. Knapp; Robert H. Lupton; Vijay K. Narayanan; Marc Postman; Daniel E. Reichart; Michael W. Richmond; Donald P. Schneider; David J. Schlegel; Michael A. Strauss; Mark SubbaRao; D. L. Tucker; Daniel E. Vanden Berk; Michael S. Vogeley; David H. Weinberg; Brian Yanny

We describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous intrinsically red galaxies that extends fainter and farther than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous red galaxies are included to a redshift of ~0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M^+_g ≈ -21.4) red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume limited out to z = 0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1 h^(-3) Gpc^3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z = 0.5.


The Astrophysical Journal | 2003

Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey

Percy Luis Gomez; Robert C. Nichol; Christopher J. Miller; Michael L. Balogh; Tomotsugu Goto; Ann I. Zabludoff; A. Kathy Romer; Mariangela Bernardi; Ravi K. Sheth; Andrew M. Hopkins; Francisco J. Castander; Andrew J. Connolly; Donald P. Schneider; J. Brinkmann; D. Q. Lamb; Mark SubbaRao; Donald G. York

We study the galaxy star formation rate (SFR) as a function of environment using the SDSS EDR data. We nd that the SFR is depressed in dense environments (clusters and groups) compared to the eld. We nd that the suppression of the SFR starts to be noticeable at around 4 virial radii. We nd no evidence for SF triggering as galaxies fall into the clusters. We also present a project to study these eects in cluster pairs systems where the eects of lamen ts and large scale structure may be noticeable.


The Astrophysical Journal | 2002

Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

Idit Zehavi; Michael R. Blanton; Joshua A. Frieman; David H. Weinberg; Hounjun J. Mo; Michael A. Strauss; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Julianne J. Dalcanton; Scott Dodelson; Mamoru Doi; Daniel J. Eisenstein; Michael L. Evans; Douglas P. Finkbeiner; Scott D. Friedman; Masataka Fukugita; James E. Gunn; Greg Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen B. H. Kent

We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700 km s-1 ≤ cz ≤ 39,000 km s-1, distributed in several long but narrow (25-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, fingers-of-God distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r) = (r/6.1 ± 0.2 h-1 Mpc)-1.75±0.03, for 0.1 h-1 Mpc ≤ r ≤ 16 h-1 Mpc. The galaxy pairwise velocity dispersion is σ12 ≈ 600 ± 100 km s-1 for projected separations 0.15 h-1 Mpc ≤ rp ≤ 5 h-1 Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r 10 h-1 Mpc: subsamples with absolute magnitude ranges centered on M* - 1.5, M*, and M* + 1.5 have real-space correlation functions that are parallel power laws of slope ≈-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.


The Astronomical Journal | 2001

The Luminosity Function of Galaxies in SDSS Commissioning Data

Michael R. Blanton; Julianne J. Dalcanton; Daniel J. Eisenstein; Jon Loveday; Michael A. Strauss; Mark SubbaRao; David H. Weinberg; John Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; J. Brinkmann; Robert J. Brunner; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Mamoru Doi; Douglas P. Finkbeiner; Scott D. Friedman; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Gregory S. Hennessy; Robert B. Hindsley; David W. Hogg; Takashi Ichikawa; Željko Ivezić; Stephen M. Kent

In the course of its commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest redshift samples of galaxies selected from CCD images. Using 11,275 galaxies complete to r* \ 17.6 over 140 deg2, we compute the luminosity function of galaxies in the r* band over a range (for h \ 1). The result is well-described by a Schechter function with parameters [23 \ M rp \ [16 h3 Mpc~3,


The Astronomical Journal | 2013

The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey

Stephen A. Smee; James E. Gunn; Alan Uomoto; N. A. Roe; David J. Schlegel; Constance M. Rockosi; Michael A. Carr; French Leger; Kyle S. Dawson; Matthew D. Olmstead; J. Brinkmann; Russell Owen; Robert H. Barkhouser; K. Honscheid; Paul Harding; Dan Long; Robert H. Lupton; Craig Loomis; Lauren Anderson; James Annis; Mariangela Bernardi; Vaishali Bhardwaj; Dmitry Bizyaev; Adam S. Bolton; Howard J. Brewington; John W. Briggs; Scott Burles; James G. Burns; Francisco J. Castander; Andrew J. Connolly

We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.


Monthly Notices of the Royal Astronomical Society | 2003

The morphology—density relation in the Sloan Digital Sky Survey

Tomotsugu Goto; Chisato Yamauchi; Y. Fujita; Sadanori Okamura; Maki Sekiguchi; Ian Smail; Mariangela Bernardi; Percy Luis Gomez

We have studied the morphology-density relation and morphology-cluster-centric-radius relation using a volume-limited sample (0.05 < z < 0.1, Mr* < -20.5) of the Sloan Digital Sky Survey (SDSS) data. Major improvements compared with previous work are: (i) automated galaxy morphology classification capable of separating galaxies into four types; (ii) three-dimensional local galaxy density estimation; and (iii) the extension of the morphology-density relation into the field region. We found that the morphology-density and morphology-cluster-centric-radius relation in the SDSS data for both of our automated morphological classifiers, Cin and Tauto, as fractions of early-type galaxies increase and late-type galaxies decrease toward increasing local galaxy density. In addition, we found that there are two characteristic changes in both the morphology-density and the morphology-radius relations, suggesting that two different mechanisms are responsible for the relations. In the sparsest regions (below 1 Mpc - 2 or outside of 1 virial radius), both relations become less noticeable, suggesting that the physical mechanisms responsible for galaxy morphological change require a denser environment. In the intermediate-density regions (density between 1 and 6 Mpc - 2 or virial radius between 0.3 and 1), intermediate-type fractions increase toward denser regions, whereas late-disc fractions decrease. Considering that the median size of intermediate-type galaxies is smaller than that of late-disc galaxies, we propose that the mechanism is likely to stop star formation in late-disc galaxies, eventually turning them into intermediate-type galaxies after their outer discs and spiral arms become invisible as stars die. For example, ram-pressure stripping is one of the candidate mechanisms. In the densest regions (above 6 Mpc - 2 or inside 0.3 virial radii), intermediate-type fractions decrease radically and early-type fractions increase in turn. This is a contrasting result to that in intermediate regions and it suggests that yet another mechanism is more responsible for the morphological change in these regions. We also compared the morphology-density relation from the SDSS (0.01 < z < 0.054) with that of the MORPHS data (z ∼ 0.5). Two relations lie on top of each other, suggesting that the morphology-density relation was already established at z ∼ 0.5 as in the present Universe. A slight sign of an excess elliptical/S0 fraction in the SDSS data in dense regions might suggest the additional formation of elliptical/S0 galaxies in the cluster core regions between z = 0.5 and 0.05.


The Astrophysical Journal | 2003

Star Formation Rate Indicators in the Sloan Digital Sky Survey

Andrew M. Hopkins; Christopher J. Miller; Robert C. Nichol; A. J. Connolly; Mariangela Bernardi; Percy Luis Gomez; Tomotsugu Goto; Christy A. Tremonti; J. Brinkmann; Željko Ivezić; D. Q. Lamb

The Sloan Digital Sky Survey (SDSS) first data release provides a database of ?106,000 unique galaxies in the main galaxy sample with measured spectra. A sample of star-forming (SF) galaxies are identified from among the 3079 of these having 1.4 GHz luminosities from FIRST, by using optical spectral diagnostics. Using 1.4 GHz luminosities as a reference star formation rate (SFR) estimator insensitive to obscuration effects, the SFRs derived from the measured SDSS H?, [O II], and u-band luminosities, as well as far-infrared luminosities from IRAS, are compared. It is established that straightforward corrections for obscuration and aperture effects reliably bring the SDSS emission line and photometric SFR estimates into agreement with those at 1.4 GHz, although considerable scatter (?60%) remains in the relations. It thus appears feasible to perform detailed investigations of star formation for large and varied samples of SF galaxies through the available spectroscopic and photometric measurements from the SDSS. We provide herein exact prescriptions for determining the SFR for SDSS galaxies. The expected strong correlation between [O II] and H? line fluxes for SF galaxies is seen, but with a median line flux ratio F/FH? = 0.23, about a factor of 2 smaller than that found in the sample of Kennicutt. This correlation, used in deriving the [O II] SFRs, is consistent with the luminosity-dependent relation found by Jansen and coworkers. The median obscuration for the SDSS SF systems is found to be AH? = 1.2 mag, while for the radio-detected sample the median obscuration is notably higher, 1.6 mag, and with a broader distribution.


The Astronomical Journal | 2002

OPTICAL AND RADIO PROPERTIES OF EXTRAGALACTIC SOURCES OBSERVED BY THE FIRST SURVEY AND THE SLOAN DIGITAL SKY SURVEY

Željko Ivezić; Kristen Menou; Gillian R. Knapp; Michael A. Strauss; Robert H. Lupton; Daniel E. Vanden Berk; Gordon T. Richards; Christy A. Tremonti; Michael A. Weinstein; Scott F. Anderson; Neta A. Bahcall; Robert H. Becker; Mariangela Bernardi; Michael R. Blanton; Daniel J. Eisenstein; Xiaohui Fan; Douglas P. Finkbeiner; Kristian Finlator; Joshua A. Frieman; James E. Gunn; Patrick B. Hall; Rita S. J. Kim; Ali Kinkhabwala; Vijay K. Narayanan; Constance M. Rockosi; David J. Schlegel; Donald P. Schneider; Iskra V. Strateva; Mark SubbaRao; Aniruddha R. Thakar

We discuss the optical and radio properties of ~30,000 FIRST (radio, 20 cm, sensitive to 1 mJy) sources positionally associated within 15 with a Sloan Digital Sky Survey (SDSS) (optical, sensitive to r* ~ 22.2) source in 1230 deg2 of sky. The matched sample represents ~30% of the 108,000 FIRST sources and 0.1% of the 2.5 ? 107 SDSS sources in the studied region. SDSS spectra are available for 4300 galaxies and 1154 quasars from the matched sample and for a control sample of 140,000 galaxies and 20,000 quasars in 1030 deg2 of sky. Here we analyze only core sources, which dominate the sample; the fraction of SDSS-FIRST sources with complex radio morphology is determined to be less than 10%. This large and unbiased catalog of optical identifications provides much firmer statistical footing for existing results and allows several new findings. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r* = 21 are optically resolved; the fraction of resolved objects among the matched sources is a function of the radio flux, increasing from ~50% at the bright end to ~90% at the FIRST faint limit. Nearly all optically unresolved radio sources have nonstellar colors indicative of quasars. We estimate an upper limit of ~5% for the fraction of quasars with broadband optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux?optical flux plane suggests the existence of the quasar radio dichotomy; 8% ? 1% of all quasars with i* 2.22) galaxies, especially those with r* > 17.5. Magnitude- and redshift-limited samples show that radio galaxies have a different optical luminosity distribution than nonradio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. For a given optical luminosity and redshift, the observed optical colors of radio galaxies are indistinguishable from those of all SDSS galaxies selected by identical criteria. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions and resulting selection effects are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. The fraction of radio galaxies whose emission-line ratios indicate an AGN (30%), rather than starburst, origin is 6 times larger than the corresponding fraction for all SDSS galaxies (r* < 17.5). We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies.


The Astronomical Journal | 2003

Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane

Mariangela Bernardi; Ravi K. Sheth; James Annis; Scott Burles; Daniel J. Eisenstein; Douglas P. Finkbeiner; David W. Hogg; Robert H. Lupton; David J. Schlegel; Mark SubbaRao; Neta A. Bahcall; John P. Blakeslee; J. Brinkmann; Francisco J. Castander; Andrew J. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; Joshua A. Frieman; Timothy M. Heckman; Gregory S. Hennessy; Željko Ivezić; Gillian R. Knapp; D. Q. Lamb; Timothy A. McKay; Jeffrey A. Munn; Robert C. Nichol; Sadanori Okamura; Donald P. Schneider; Aniruddha R. Thakar

A magnitude-limited sample of nearly 9000 early-type galaxies in the redshift range 0.01 ≤ z ≤ 0.3 was selected from the Sloan Digital Sky Survey (SDSS) using morphological and spectral criteria. The fundamental plane relation in this sample is Ro ∝ σ1.49±0.05I in the r* band. It is approximately the same in the g*, i*, and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only a little. If the fundamental plane is used to quantify this evolution, then the apparent magnitude limit can masquerade as evolution; once this selection effect has been accounted for, the evolution is consistent with that of a passively evolving population that formed the bulk of its stars about 9 Gyr ago. One of the principal advantages of the SDSS sample over previous samples is that the galaxies in it lie in environments ranging from isolation in the field to the dense cores of clusters. The fundamental plane shows that galaxies in dense regions are slightly different from galaxies in less dense regions.

Collaboration


Dive into the Mariangela Bernardi's collaboration.

Top Co-Authors

Avatar

Ravi K. Sheth

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Schlegel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott Burles

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge