Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariangela Russo is active.

Publication


Featured researches published by Mariangela Russo.


Journal of Clinical Investigation | 2010

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

Federica Di Nicolantonio; Sabrina Arena; Josep Tabernero; Stefano Grosso; Francesca Molinari; Teresa Macarulla; Mariangela Russo; Carlotta Cancelliere; Davide Zecchin; Luca Mazzucchelli; Takehiko Sasazuki; Senji Shirasawa; Massimo Geuna; Milo Frattini; José Baselga; Margherita Gallicchio; Stefano Biffo; Alberto Bardelli

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.


Science Translational Medicine | 2014

Blockade of EGFR and MEK Intercepts Heterogeneous Mechanisms of Acquired Resistance to Anti-EGFR Therapies in Colorectal Cancer

Sandra Misale; Sabrina Arena; Simona Lamba; Giulia Siravegna; Alice Lallo; Sebastijan Hobor; Mariangela Russo; Michela Buscarino; Luca Lazzari; Andrea Sartore-Bianchi; Katia Bencardino; Alessio Amatu; Calogero Lauricella; Emanuele Valtorta; Salvatore Siena; Federica Di Nicolantonio; Alberto Bardelli

Colorectal cancers that become resistant to EGFR inhibitors through a variety of mechanisms can be effectively treated by inhibiting MEK in conjunction with EGFR. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential applications of this technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. Colorectal cancers (CRCs) that are sensitive to the anti–epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal–regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.


Cancer Discovery | 2016

Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer

Mariangela Russo; Giulia Siravegna; Lawrence S. Blaszkowsky; Giorgio Corti; Giovanni Crisafulli; Leanne G. Ahronian; Benedetta Mussolin; Eunice L. Kwak; Michela Buscarino; Luca Lazzari; Emanuele Valtorta; Mauro Truini; Nicholas A. Jessop; Hayley Robinson; Theodore S. Hong; Mari Mino-Kenudson; Federica Di Nicolantonio; Ashraf Thabet; Andrea Sartore-Bianchi; Salvatore Siena; A. John Iafrate; Alberto Bardelli; Ryan B. Corcoran

UNLABELLED How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiologic imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patients progressing liver metastasis following prolonged response to cetuximab revealed a MEK1(K57T) mutation as a novel mechanism of acquired resistance. This lesion regressed upon treatment with panitumumab and the MEK inhibitor trametinib. In circulating tumor DNA (ctDNA), mutant MEK1 levels declined with treatment, but a previously unrecognized KRAS(Q61H) mutation was also identified that increased despite therapy. This same KRAS mutation was later found in a separate nonresponding metastasis. In summary, parallel analyses of tumor biopsies and serial ctDNA monitoring show that lesion-specific radiographic responses to subsequent targeted therapies can be driven by distinct resistance mechanisms arising within separate tumor lesions in the same patient. SIGNIFICANCE Molecular heterogeneity ensuing from acquired resistance drives lesion-specific responses to subsequent targeted therapies. Analysis of a single-lesion biopsy is inadequate to guide selection of subsequent targeted therapies. ctDNA profiles allow the detection of concomitant resistance mechanisms residing in separate metastases and assessment of the effect of therapies designed to overcome resistance.


Clinical Cancer Research | 2015

Emergence of Multiple EGFR Extracellular Mutations during Cetuximab Treatment in Colorectal Cancer

Sabrina Arena; Beatriz Bellosillo; Giulia Siravegna; Alejandro Martinez; Israel Cañadas; Luca Lazzari; Noelia Ferruz; Mariangela Russo; Sandra Misale; Iria González; Mar Iglesias; Elena Gavilan; Giorgio Corti; Sebastijan Hobor; Giovanni Crisafulli; Marta Salido; Juan Sánchez; Alba Dalmases; Joaquim Bellmunt; Gianni De Fabritiis; Ana Rovira; Federica Di Nicolantonio; Joan Albanell; Alberto Bardelli; Clara Montagut

Purpose: Patients with colorectal cancer who respond to the anti-EGFR antibody cetuximab often develop resistance within several months of initiating therapy. To design new lines of treatment, the molecular landscape of resistant tumors must be ascertained. We investigated the role of mutations in the EGFR signaling axis on the acquisition of resistance to cetuximab in patients and cellular models. Experimental Design: Tissue samples were obtained from 37 patients with colorectal cancer who became refractory to cetuximab. Colorectal cancer cells sensitive to cetuximab were treated until resistant derivatives emerged. Mutational profiling of biopsies and cell lines was performed. Structural modeling and functional analyses were performed to causally associate the alleles to resistance. Results: The genetic profile of tumor specimens obtained after cetuximab treatment revealed the emergence of a complex pattern of mutations in EGFR, KRAS, NRAS, BRAF, and PIK3CA genes, including two novel EGFR ectodomain mutations (R451C and K467T). Mutational profiling of cetuximab-resistant cells recapitulated the molecular landscape observed in clinical samples and revealed three additional EGFR alleles: S464L, G465R, and I491M. Structurally, these mutations are located in the cetuximab-binding region, except for the R451C mutant. Functionally, EGFR ectodomain mutations prevent binding to cetuximab but a subset is permissive for interaction with panitumumab. Conclusions: Colorectal tumors evade EGFR blockade by constitutive activation of downstream signaling effectors and through mutations affecting receptor–antibody binding. Both mechanisms of resistance may occur concomitantly. Our data have implications for designing additional lines of therapy for patients with colorectal cancer who relapse upon treatment with anti-EGFR antibodies. Clin Cancer Res; 21(9); 2157–66. ©2015 AACR.


Nature Communications | 2015

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets

Enzo Medico; Mariangela Russo; Gabriele Picco; Carlotta Cancelliere; Emanuele Valtorta; Giorgio Corti; Michela Buscarino; Claudio Isella; Simona Lamba; Barbara Martinoglio; Silvio Veronese; Salvatore Siena; Andrea Sartore-Bianchi; Marco Beccuti; Marcella Mottolese; Francesca Cordero; Federica Di Nicolantonio; Alberto Bardelli

The development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses

Federica Di Nicolantonio; Sabrina Arena; Margherita Gallicchio; Davide Zecchin; Miriam Martini; Simona Emilia Flonta; Giulia Stella; Simona Lamba; Carlotta Cancelliere; Mariangela Russo; Massimo Geuna; Giovanni Appendino; Roberto Fantozzi; Enzo Medico; Alberto Bardelli

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Cancer Discovery | 2016

Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer

Mariangela Russo; Sandra Misale; Ge Wei; Giulia Siravegna; Giovanni Crisafulli; Luca Lazzari; Giorgio Corti; Giuseppe Rospo; Luca Novara; Benedetta Mussolin; Alice Bartolini; Nicholas Cam; Roopal Patel; Shunqi Yan; Robert Shoemaker; Robert Wild; Federica Di Nicolantonio; Andrea Sartore-Bianchi; Gang Li; Salvatore Siena; Alberto Bardelli

UNLABELLED Entrectinib is a first-in-class pan-TRK kinase inhibitor currently undergoing clinical testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA-NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patients relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profiling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1, p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclinical models confirmed that either mutation renders the TRKA kinase insensitive to entrectinib. These findings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identification of drug resistance mechanisms in parallel with clinical treatment of an individual patient. We describe for the first time that p.G595R and p.G667C TRKA mutations drive acquired resistance to entrectinib in colorectal cancers carrying NTRK1 rearrangements.


Cell Reports | 2014

RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

Simona Lamba; Mariangela Russo; Chong Sun; Luca Lazzari; Carlotta Cancelliere; Wipawadee Grernrum; Cor Lieftink; René Bernards; Federica Di Nicolantonio; Alberto Bardelli

KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA) screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA)-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.


Nature | 2017

Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth

Giovanni Germano; Simona Lamba; Giuseppe Rospo; Ludovic Barault; Alessandro Magri; Federica Maione; Mariangela Russo; Giovanni Crisafulli; Alice Bartolini; Giulia Lerda; Giulia Siravegna; Benedetta Mussolin; Roberta Frapolli; Monica Montone; Federica Morano; Filippo de Braud; Nabil Amirouchene-Angelozzi; Silvia Marsoni; Maurizio D’Incalci; Armando Orlandi; Enrico Giraudo; Andrea Sartore-Bianchi; Salvatore Siena; Filippo Pietrantonio; Federica Di Nicolantonio; Alberto Bardelli

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Cancer Discovery | 2014

Climbing RAS, the Everest of Oncogenes

Mariangela Russo; F Di Nicolantonio; Alberto Bardelli

SUMMARY Mutations that activate the small GTP-binding protein KRAS are the most common oncogenic event in human tumors. Thirty years after its discovery, mutant KRAS has yet to be therapeutically conquered.

Collaboration


Dive into the Mariangela Russo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge