Mariángela Vargas
University of Costa Rica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariángela Vargas.
Journal of Proteome Research | 2011
Daniel Petras; Libia Sanz; Álvaro Segura; María Herrera; Mauren Villalta; Daniela Solano; Mariángela Vargas; Guillermo León; David A. Warrell; R. David G. Theakston; Robert A. Harrison; Nandul Durfa; Abdulsalam Nasidi; José María Gutiérrez; Juan J. Calvete
Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N. pallida revealed similar compositional trends. The high content of cytotoxins and PLA(2)s may account for the extensive tissue necrosis characteristic of the envenomings by these species. The high abundance of a type I α-neurotoxin in N. nubiae may be responsible for the high lethal toxicity of this venom (in rodents). The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests. It partially immunodepleted 3FTx and PLA(2)s and completely immunodepleted SVMPs and CRISPs in all venoms. The antivenom neutralized the dermonecrotic and PLA(2) activities of all African Naja venoms, whereas lethality was eliminated in the venoms of N. nigricollis, N. mossambica, and N. pallida but not in those of N. nubiae and N. katiensis. The lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region. The impaired activity of EchiTAb-Plus-ICP against N. katiensis may not represent a major concern. This species is sympatric with N. nigricollis in many regions of Africa, although very few bites have been attributed to it.
Toxicon | 2013
Guillermo León; María Herrera; Alvaro Segura; Mauren Villalta; Mariángela Vargas; José María Gutiérrez
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Journal of Proteomics | 2012
María Herrera; Julián Fernández; Mariángela Vargas; Mauren Villalta; Álvaro Segura; Guillermo León; Yamileth Angulo; Owen Paiva; Teatulohi Matainaho; Simon D. Jensen; Kenneth D. Winkel; Juan J. Calvete; David J. Williams; José María Gutiérrez
The venom proteomes of populations of the highly venomous taipan snake, Oxyuranus scutellatus, from Australia and Papua New Guinea (PNG), were characterized by reverse-phase HPLC fractionation, followed by analysis of chromatographic fractions by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. Proteins belonging to the following seven protein families were identified in the two venoms: phospholipase A(2) (PLA(2)), Kunitz-type inhibitor, metalloproteinase (SVMP), three-finger toxin (3FTx), serine proteinase, cysteine-rich secretory proteins (CRISP), and coagulation factor V-like protein. In addition, C-type lectin/lectin-like protein and venom natriuretic peptide were identified in the venom of specimens from PNG. PLA(2)s comprised more than 65% of the venoms of these two populations. Antivenoms generated against the venoms of these populations showed a pattern of cross-neutralization, corroborating the immunological kinship of these venoms. Toxicity experiments performed in mice suggest that, at low venom doses, neurotoxicity leading to respiratory paralysis represents the predominant mechanism of prey immobilization and death. However, at high doses, such as those injected in natural bites, intravascular thrombosis due to the action of the prothrombin activator may constitute a potent and very rapid mechanism for killing prey.
Toxicon | 2009
Álvaro Segura; María Herrera; Esteban González; Mariángela Vargas; Gabriela Solano; José María Gutiérrez; Guillermo León
Liquid formulations of antivenom require a cold chain for their distribution and storage, especially in tropical countries characterized by high temperature and humidity (climatic zone IV). Since cold chain is often deficient in many regions, there is a need to develop novel formulations of liquid antivenoms of higher stability at room temperatures. The effect of addition of the polyols mannitol and sorbitol on the thermal stability of caprylic acid-fractionated equine whole IgG antivenoms was assessed in preparations having different concentrations of protein and phenol. Results evidenced that: (1) turbidity increases proportionally to phenol and protein concentration. (2) After one year of storage at 25 degrees C, caprylic acid-purified antivenoms, formulated with or without polyols, did not show evidences of instability. (3) Formulation of antivenoms with 2.0 M sorbitol prevents the appearance of turbidity after one year storage at 37 degrees C; however, there was a partial loss in neutralizing potency in these conditions. Results suggest that formulation based on sorbitol is an option to obtain liquid whole IgG antivenoms of higher stability at tropical room temperatures.
Biologicals | 2013
Álvaro Segura; María Herrera; Mauren Villalta; Mariángela Vargas; José María Gutiérrez; Guillermo León
Purity is a characteristic that, together with effectiveness and safety, must be tested to determine the quality of biopharmaceutical products. In therapeutic immunoglobulins, such as human intravenous immunoglobulin (IVIG), purity is evaluated on the basis of physicochemical properties, and is usually assessed by chromatography and electrophoresis. However, in the case of antivenoms these methods fail to discriminate between antibodies towards venom antigens, which constitute the active substance, and antibodies towards non-venom antigens, which are the major impurities in most of the current formulations. The assessment of this aspect of purity requires the use of the immunochemical methods. In this study, it was demonstrated that antivenoms showing physicochemical purity higher than 90% might present immunochemical purity lower than 40%. It is proposed that a comprehensive analysis of antivenom purity should combine physicochemical and immunochemical parameters. In addition, these results are crucial to decide the more appropriate strategies to improve antivenom purity. Taking into account that the current methods of antivenom purification remove most non-antibodies proteins, we propose that efforts must be primarily directed to the improvement of immunization protocols to enhance the antibody response towards venom components in hyperimmunized animals, and secondarily, in the realm of immunoglobulin purification technology.
Toxins | 2017
José María Gutiérrez; Gabriela Solano; Davinia Pla; María Herrera; Álvaro Segura; Mariángela Vargas; Mauren Villalta; Andrés Sánchez; Libia Sanz; Bruno Lomonte; Guillermo León; Juan J. Calvete
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Toxicon | 2014
María Herrera; Virgilio Tattini; Ronaldo N.M. Pitombo; José María Gutiérrez; Camila Figueiredo Borgognoni; José Vega-Baudrit; Federico Solera; Maykel Cerdas; Álvaro Segura; Mauren Villalta; Mariángela Vargas; Guillermo León
Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions.
Biotechnology Progress | 2012
Mariángela Vargas; Álvaro Segura; María Herrera; Mauren Villalta; Yamileth Angulo; José María Gutiérrez; Guillermo León; Thierry Burnouf
The current shortages in human plasma products at global levels justify the development of new, cost effective plasma fractionation methods. We have developed a fractionation process to obtain immunoglobulin G (IgG) and albumin‐enriched fractions based on polymer‐salt aqueous two phase system (ATPS). A small‐scale (0.02 L) ATPS composed of polyethyleneglycol 3350 (PEG), potassium phosphate and sodium chloride, at pH 6.1, was evaluated and subjected to 50‐fold scale‐up (1 L). Further purification of the fractions was performed using caprylic acid precipitation and ion exchange chromatography. Similar yield and purity were obtained at both small and large scales. IgG precipitated in the PEG rich upper phase at 83% recovery and 2.75‐fold purification factor. An 81% pure albumin fraction was obtained in the salt rich bottom phase with a 91% yield. After polishing, IgG was obtained at a recovery of 70% and a purity of 92%. Corresponding values for albumin were 91% and 90%. This IgG and albumin fractionation technology deserves further evaluation as it may represent a potential alternative to conventional plasma fractionation methods.
PLOS Neglected Tropical Diseases | 2015
Magdy El-Ekiaby; Mariángela Vargas; Makram A. Sayed; George Gorgy; Hadi Alphonse Goubran; Mirjana Radosevic; Thierry Burnouf
Background Immunoglobulin G (IgG) is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need. Methodology/Principal Findings IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at <-20°C. The resulting preparation had a mean protein content of 60.5 g/L, 90.2% immunoglobulins, including 83.2% IgG, 12.4% IgA, and 4.4% IgM, and residual albumin. There was fourfold to sixfold enrichment of anti-hepatitis B and anti-rubella antibodies. Analyses of aggregates (<3%), prekallicrein (5-7 IU/mL), plasmin (26.3 mU/mL), thrombin (2.5 mU/mL), thrombin-like activity (0.011 U/g), thrombin generation capacity (< 223 nM), and Factor XI (<0.01 U/mL) activity, Factor XI/XIa antigen (2.4 ng/g) endotoxin (<0.5 EU/mL), and general safety test in rats showed the in vitro safety profile. Viral validation revealed >5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment. Conclusions/Significance 90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients. It is also relevant for preparing hyperimmune IgG from convalescent plasma during infectious outbreaks such as the current Ebola virus episode.
American Journal of Tropical Medicine and Hygiene | 2014
María Herrera; Owen Paiva; Ana Helena Pagotto; Álvaro Segura; Solange M.T. Serrano; Mariángela Vargas; Mauren Villalta; Simon D. Jensen; Guillermo León; David J. Williams; José María Gutiérrez
Antivenoms manufactured by bioCSL Limited (Australia) and Instituto Clodomiro Picado (Costa Rica) against the venom of the taipan snakes (Oxyuranus scutellatus) from Australia and Papua New Guinea (PNG), respectively, were compared using antivenomics, an analytical approach that combines proteomics with immunoaffinity chromatography. Both antivenoms recognized all venom proteins present in venom from PNG O. scutellatus, although a pattern of partial recognition was observed for some components. In the case of the Australian O. scutellatus venom, both antivenoms immunorecognized the majority of the components, but the CSL antivenom showed a stronger pattern of immunoreactivity, which was revealed by the percentage of retained proteins in the immunoaffinity column. Antivenoms interacted with taipoxin in surface plasmon resonance. These observations on antivenomics agree with previous neutralization studies.