Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Fontana is active.

Publication


Featured researches published by Marianna Fontana.


Jacc-cardiovascular Imaging | 2013

Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis.

Theodoros D. Karamitsos; Stefan K Piechnik; Sanjay M. Banypersad; Marianna Fontana; Ntobeko B. Ntusi; Vanessa M Ferreira; Carol J. Whelan; Saul G. Myerson; Matthew D. Robson; Philip N. Hawkins; Stefan Neubauer; James C. Moon

OBJECTIVES This study sought to explore the potential role of noncontrast myocardial T1 mapping for detection of cardiac involvement in patients with primary amyloid light-chain (AL) amyloidosis. BACKGROUND Cardiac involvement carries a poor prognosis in systemic AL amyloidosis. Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is useful for the detection of cardiac amyloid, but characteristic LGE patterns do not always occur or they appear late in the disease. Noncontrast characterization of amyloidotic myocardium with T1 mapping may improve disease detection. Furthermore, quantitative assessment of myocardial amyloid load would be of great value. METHODS Fifty-three AL amyloidosis patients (14 with no cardiac involvement, 11 with possible involvement, and 28 with definite cardiac involvement based on standard biomarker and echocardiographic criteria) underwent CMR (1.5-T) including noncontrast T1 mapping (shortened modified look-locker inversion recovery [ShMOLLI] sequence) and LGE imaging. These were compared with 36 healthy volunteers and 17 patients with aortic stenosis and a comparable degree of left ventricular hypertrophy as the cardiac amyloid patients. RESULTS Myocardial T1 was significantly elevated in cardiac AL amyloidosis patients (1,140 ± 61 ms) compared to normal subjects (958 ± 20 ms, p < 0.001) and patients with aortic stenosis (979 ± 51 ms, p < 0.001). Myocardial T1 was increased in AL amyloid even when cardiac involvement was uncertain (1,048 ± 48 ms) or thought absent (1,009 ± 31 ms). A noncontrast myocardial T1 cutoff of 1,020 ms yielded 92% accuracy for identifying amyloid patients with possible or definite cardiac involvement. In the AL amyloidosis cohort, there were significant correlations between myocardial T1 time and indices of systolic and diastolic dysfunction. CONCLUSIONS Noncontrast T1 mapping has high diagnostic accuracy for detecting cardiac AL amyloidosis, correlates well with markers of systolic and diastolic dysfunction, and is potentially more sensitive for detecting early disease than LGE imaging. Elevated myocardial T1 may represent a direct marker of cardiac amyloid load. Further studies are needed to assess the prognostic significance of T1 elevation.


Circulation-cardiovascular Imaging | 2013

Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping

Daniel Sado; Steven K White; Stefan K Piechnik; Sanjay M. Banypersad; Thomas A. Treibel; Gabriella Captur; Marianna Fontana; Viviana Maestrini; Andrew S. Flett; Matthew D. Robson; Robin H. Lachmann; Elaine Murphy; Atul Mehta; Derralynn Hughes; Stefan Neubauer; Perry M. Elliott; James C. Moon

Background— Anderson-Fabry disease (AFD) is a rare but underdiagnosed intracellular lipid disorder that can cause left ventricular hypertrophy (LVH). Lipid is known to shorten the magnetic resonance imaging parameter T1. We hypothesized that noncontrast T1 mapping by cardiovascular magnetic resonance would provide a novel and useful measure in this disease with potential to detect early cardiac involvement and distinguish AFD LVH from other causes. Methods and Results— Two hundred twenty-seven subjects were studied: patients with AFD (n=44; 55% with LVH), healthy volunteers (n=67; 0% with LVH), patients with hypertension (n=41; 24% with LVH), patients with hypertrophic cardiomyopathy (n=34; 100% with LVH), those with severe aortic stenosis (n=21; 81% with LVH), and patients with definite amyloid light-chain (AL) cardiac amyloidosis (n=20; 100% with LVH). T1 mapping was performed using the shortened modified Look-Locker inversion sequence on a 1.5-T magnet before gadolinium administration with primary results derived from the basal and midseptum. Compared with health volunteers, septal T1 was lower in AFD and higher in other diseases (AFD versus healthy volunteers versus other patients, 882±47, 968±32, 1018±74 milliseconds; P<0.0001). In patients with LVH (n=105), T1 discriminated completely between AFD and other diseases with no overlap. In AFD, T1 correlated inversely with wall thickness (r=−0.51; P=0.0004) and was abnormal in 40% of subjects who did not have LVH. Segmentally, AFD showed pseudonormalization or elevation of T1 in the left ventricular inferolateral wall, correlating with the presence or absence of late gadolinium enhancement (1001±82 versus 891±38 milliseconds; P<0.0001). Conclusions— Noncontrast T1 mapping shows potential as a unique and powerful measurement in the imaging assessment of LVH and AFD.


Circulation | 2016

Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis

Julian D. Gillmore; Mathew S. Maurer; Rodney H. Falk; Giampaolo Merlini; Thibaud Damy; Angela Dispenzieri; Ashutosh D. Wechalekar; John L. Berk; Candida Cristina Quarta; Martha Grogan; Helen J. Lachmann; Sabahat Bokhari; Adam Castano; Sharmila Dorbala; Geoff B. Johnson; Andor W. J. M. Glaudemans; Tamer Rezk; Marianna Fontana; Giovanni Palladini; Paolo Milani; Pierluigi Guidalotti; Katarina Flatman; Thirusha Lane; Frederick W. Vonberg; Carol J. Whelan; James C. Moon; Frederick L. Ruberg; Edward J. Miller; David F. Hutt; Bouke Hazenberg

Background— Cardiac transthyretin (ATTR) amyloidosis is a progressive and fatal cardiomyopathy for which several promising therapies are in development. The diagnosis is frequently delayed or missed because of the limited specificity of echocardiography and the traditional requirement for histological confirmation. It has long been recognized that technetium-labeled bone scintigraphy tracers can localize to myocardial amyloid deposits, and use of this imaging modality for the diagnosis of cardiac ATTR amyloidosis has lately been revisited. We conducted a multicenter study to ascertain the diagnostic value of bone scintigraphy in this disease. Methods and Results— Results of bone scintigraphy and biochemical investigations were analyzed from 1217 patients with suspected cardiac amyloidosis referred for evaluation in specialist centers. Of 857 patients with histologically proven amyloid (374 with endomyocardial biopsies) and 360 patients subsequently confirmed to have nonamyloid cardiomyopathies, myocardial radiotracer uptake on bone scintigraphy was >99% sensitive and 86% specific for cardiac ATTR amyloid, with false positives almost exclusively from uptake in patients with cardiac AL amyloidosis. Importantly, the combined findings of grade 2 or 3 myocardial radiotracer uptake on bone scintigraphy and the absence of a monoclonal protein in serum or urine had a specificity and positive predictive value for cardiac ATTR amyloidosis of 100% (positive predictive value confidence interval, 98.0–100). Conclusions— Bone scintigraphy enables the diagnosis of cardiac ATTR amyloidosis to be made reliably without the need for histology in patients who do not have a monoclonal gammopathy. We propose noninvasive diagnostic criteria for cardiac ATTR amyloidosis that are applicable to the majority of patients with this disease.


Jacc-cardiovascular Imaging | 2014

Native T1 Mapping in Transthyretin Amyloidosis

Marianna Fontana; Sanjay M. Banypersad; Thomas A. Treibel; Viviana Maestrini; Daniel Sado; Steven K White; Silvia Pica; Silvia Castelletti; Stefan K Piechnik; Matthew D. Robson; Janet A. Gilbertson; Dorota Rowczenio; David F. Hutt; Helen J. Lachmann; Ashutosh D. Wechalekar; Carol J. Whelan; Julian D. Gillmore; Philip N. Hawkins; James C. Moon

OBJECTIVES The aims of the study were to explore the ability of native myocardial T1 mapping by cardiac magnetic resonance to: 1) detect cardiac involvement in patients with transthyretin amyloidosis (ATTR amyloidosis); 2) track the cardiac amyloid burden; and 3) detect early disease. BACKGROUND ATTR amyloidosis is an underdiagnosed cause of heart failure, with no truly quantitative test. In cardiac immunoglobulin light-chain amyloidosis (AL amyloidosis), T1 has high diagnostic accuracy and tracks disease. Here, the diagnostic role of native T1 mapping in the other key type of cardiac amyloid, ATTR amyloidosis, is assessed. METHODS A total of 3 groups were studied: ATTR amyloid patients (n = 85; 70 males, age 73 ± 10 years); healthy individuals with transthyretin mutations in whom standard cardiac investigations were normal (n = 8; 3 males, age 47 ± 6 years); and AL amyloid patients (n = 79; 55 males, age 62 ± 10 years). These were compared with 52 healthy volunteers and 46 patients with hypertrophic cardiomyopathy (HCM). All underwent T1 mapping (shortened modified look-locker inversion recovery); ATTR patients and mutation carriers also underwent cardiac 3,3-diphosphono-1,2-propanodicarboxylicacid (DPD) scintigraphy. RESULTS T1 was elevated in ATTR patients compared with HCM and normal subjects (1,097 ± 43 ms vs. 1,026 ± 64 ms vs. 967 ± 34 ms, respectively; both p < 0.0001). In established cardiac ATTR amyloidosis, T1 elevation was not as high as in AL amyloidosis (AL 1,130 ± 68 ms; p = 0.01). Diagnostic performance was similar for AL and ATTR amyloid (vs. HCM: AL area under the curve 0.84 [95% confidence interval: 0.76 to 0.92]; ATTR area under the curve 0.85 [95% confidence interval: 0.77 to 0.92]; p < 0.0001). T1 tracked cardiac amyloid burden as determined semiquantitatively by DPD scintigraphy (p < 0.0001). T1 was not elevated in mutation carriers (952 ± 35 ms) but was in isolated DPD grade 1 (n = 9, 1,037 ± 60 ms; p = 0.001). CONCLUSIONS Native myocardial T1 mapping detects cardiac ATTR amyloid with similar diagnostic performance and disease tracking to AL amyloid, but with lower maximal T1 elevation, and appears to be an early disease marker.


The New England Journal of Medicine | 2015

Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component

Duncan B. Richards; Louise M. Cookson; Alienor Berges; Sharon V. Barton; Thirusha Lane; James M. Ritter; Marianna Fontana; James C. Moon; Massimo Pinzani; Julian D. Gillmore; Philip N. Hawkins; Mark B. Pepys

BACKGROUND The amyloid fibril deposits that cause systemic amyloidosis always contain the nonfibrillar normal plasma protein, serum amyloid P component (SAP). The drug (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC) efficiently depletes SAP from the plasma but leaves some SAP in amyloid deposits that can be specifically targeted by therapeutic IgG anti-SAP antibodies. In murine amyloid A type amyloidosis, the binding of these antibodies to the residual SAP in amyloid deposits activates complement and triggers the rapid clearance of amyloid by macrophage-derived multinucleated giant cells. METHODS We conducted an open-label, single-dose-escalation, phase 1 trial involving 15 patients with systemic amyloidosis. After first using CPHPC to deplete circulating SAP, we infused a fully humanized monoclonal IgG1 anti-SAP antibody. Patients with clinical evidence of cardiac involvement were not included for safety reasons. Organ function, inflammatory markers, and amyloid load were monitored. RESULTS There were no serious adverse events. Infusion reactions occurred in some of the initial recipients of larger doses of antibody; reactions were reduced by slowing the infusion rate for later patients. At 6 weeks, patients who had received a sufficient dose of antibody in relation to their amyloid load had decreased liver stiffness, as measured with the use of transient elastography. These patients also had improvements in liver function in association with a substantial reduction in hepatic amyloid load, as shown by means of SAP scintigraphy and measurement of extracellular volume by magnetic resonance imaging. A reduction in kidney amyloid load and shrinkage of an amyloid-laden lymph node were also observed. CONCLUSIONS Treatment with CPHPC followed by an anti-SAP antibody safely triggered clearance of amyloid deposits from the liver and some other tissues. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01777243.).


European Heart Journal | 2015

T1 mapping and survival in systemic light-chain amyloidosis.

Sanjay M. Banypersad; Marianna Fontana; Viviana Maestrini; Daniel Sado; Gabriella Captur; Aviva Petrie; Stefan K Piechnik; Carol J. Whelan; Anna S Herrey; Julian D. Gillmore; Helen J. Lachmann; Ashutosh D. Wechalekar; Philip N. Hawkins; James C. Moon

Aims To assess the prognostic value of myocardial pre-contrast T1 and extracellular volume (ECV) in systemic amyloid light-chain (AL) amyloidosis using cardiovascular magnetic resonance (CMR) T1 mapping. Methods and results One hundred patients underwent CMR and T1 mapping pre- and post-contrast. Myocardial ECV was calculated at contrast equilibrium (ECVi) and 15 min post-bolus (ECVb). Fifty-four healthy volunteers served as controls. Patients were followed up for a median duration of 23 months and survival analyses were performed. Mean ECVi was raised in amyloid (0.44 ± 0.12) as was ECVb (mean 0.44 ± 0.12) compared with healthy volunteers (0.25 ± 0.02), P < 0.001. Native pre-contrast T1 was raised in amyloid (mean 1080 ± 87 ms vs. 954 ± 34 ms, P < 0.001). All three correlated with pre-test probability of cardiac involvement, cardiac biomarkers, and systolic and diastolic dysfunction. During follow-up, 25 deaths occurred. An ECVi of >0.45 carried a hazard ratio (HR) for death of 3.84 [95% confidence interval (CI): 1.53–9.61], P = 0.004 and pre-contrast T1 of >1044 ms = HR 5.39 (95% CI: 1.24–23.4), P = 0.02. Extracellular volume after primed infusion and ECVb performed similarly. Isolated post-contrast T1 was non-predictive. In Cox regression models, ECVi was independently predictive of mortality (HR = 4.41, 95% CI: 1.35–14.4) after adjusting for E:E′, ejection fraction, diastolic dysfunction grade, and NT-proBNP. Conclusion Myocardial ECV (bolus or infusion technique) and pre-contrast T1 are biomarkers for cardiac AL amyloid and they predict mortality in systemic amyloidosis.


Circulation | 2015

Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis

Marianna Fontana; Silvia Pica; Patricia Reant; Amna Abdel-Gadir; Thomas A. Treibel; Sanjay M. Banypersad; Viviana Maestrini; William Barcella; Stefania Rosmini; Heerajnarain Bulluck; Rabya Sayed; Ketna Patel; Shameem Mamhood; Chiara Bucciarelli-Ducci; Carol J. Whelan; Anna S Herrey; Helen J. Lachmann; Ashutosh D. Wechalekar; Charlotte Manisty; Eric B. Schelbert; Peter Kellman; Julian D. Gillmore; Philip N. Hawkins; James C. Moon

Background— The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Methods and Results— Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1–13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E′, and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3–13.1; P<0.05). Conclusions— There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after adjustment for known prognostic factors.


Circulation-cardiovascular Imaging | 2013

Quantification of Myocardial Extracellular Volume Fraction in Systemic AL Amyloidosis An Equilibrium Contrast Cardiovascular Magnetic Resonance Study

Sanjay M. Banypersad; Daniel Sado; Andrew S. Flett; Simon D.J. Gibbs; Jennifer H. Pinney; Viviana Maestrini; Andrew T Cox; Marianna Fontana; Carol J. Whelan; Ashutosh D. Wechalekar; Philip N. Hawkins; James C. Moon

Background— Cardiac involvement predicts outcome in systemic AL amyloidosis and influences therapeutic options. Current methods of cardiac assessment do not quantify myocardial amyloid burden. We used equilibrium contrast cardiovascular magnetic resonance (EQ-CMR) to quantify the cardiac interstitial compartment, measured as myocardial extracellular volume (ECV) fraction, hypothesizing it would reflect amyloid burden. Methods and Results— Sixty patients with systemic AL amyloidosis (65% men, median age 65 years) underwent conventional clinical cardiovascular magnetic resonance, including late enhancement, equilibrium contrast cardiovascular magnetic resonance, and clinical cardiac evaluation, including ECG, echocardiography, assays of N-terminal pro-brain natriuretic peptide and Troponin T, and functional assessment comprising the 6-minute walk test in ambulant individuals. Cardiac involvement in the amyloidosis patients was categorized as definite, probable, or none, suspected by conventional criteria. Findings were compared with 82 healthy controls. Mean ECV was significantly greater in patients than healthy controls (0.25 versus 0.40, P <0.001) and correlated with conventional criteria for characterizing the presence of cardiac involvement, the categories of none, probable, definite corresponding to ECV of 0.276 versus 0.342 versus 0.488, respectively ( P <0.001). ECV was correlated with cardiac parameters by echocardiography (eg, Tissue Doppler Imaging [TDI] S-wave R=0.52, P<0.001) and conventional cardiovascular magnetic resonance (eg, indexed left ventricular mass R =0.56, P <0.001). There were also significant correlations with N-terminal pro-brain natriuretic peptide ( R =0.69, P <0.001) and Troponin T ( R =0.53, P =0.006). ECV was associated with smaller QRS voltages ( R =0.57, P <0.001) and correlated with poorer performance in the 6-minute walk test ( R =0.36, P =0.03). Conclusions— Myocardial ECV measurement has potential to become the first noninvasive test to quantify cardiac amyloid burden.


Journal of Cardiovascular Magnetic Resonance | 2012

Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR

Marianna Fontana; Steve K White; Sanjay M. Banypersad; Daniel Sado; Viviana Maestrini; Andrew S. Flett; Stefan K Piechnik; Stefan Neubauer; Neil Roberts; James C. Moon

BackgroundMyocardial extracellular volume (ECV) is elevated in fibrosis or infiltration and can be quantified by measuring the haematocrit with pre and post contrast T1 at sufficient contrast equilibrium. Equilibrium CMR (EQ-CMR), using a bolus-infusion protocol, has been shown to provide robust measurements of ECV using a multibreath-hold T1 pulse sequence. Newer, faster sequences for T1 mapping promise whole heart coverage and improved clinical utility, but have not been validated.MethodsMultibreathhold T1 quantification with heart rate correction and single breath-hold T1 mapping using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) were used in equilibrium contrast CMR to generate ECV values and compared in 3 ways.Firstly, both techniques were compared in a spectrum of disease with variable ECV expansion (n=100, 50 healthy volunteers, 12 patients with hypertrophic cardiomyopathy, 18 with severe aortic stenosis, 20 with amyloid). Secondly, both techniques were correlated to human histological collagen volume fraction (CVF%, n=18, severe aortic stenosis biopsies). Thirdly, an assessment of test:retest reproducibility of the 2 CMR techniques was performed 1 week apart in individuals with widely different ECVs (n=10 healthy volunteers, n=7 amyloid patients).ResultsMore patients were able to perform ShMOLLI than the multibreath-hold technique (6% unable to breath-hold). ECV calculated by multibreath-hold T1 and ShMOLLI showed strong correlation (r2=0.892), little bias (bias -2.2%, 95%CI -8.9% to 4.6%) and good agreement (ICC 0.922, range 0.802 to 0.961, p<0.0001). ECV correlated with histological CVF% by multibreath-hold ECV (r2= 0.589) but better by ShMOLLI ECV (r2= 0.685). Inter-study reproducibility demonstrated that ShMOLLI ECV trended towards greater reproducibility than the multibreath-hold ECV, although this did not reach statistical significance (95%CI -4.9% to 5.4% versus 95%CI -6.4% to 7.3% respectively, p=0.21).ConclusionsECV quantification by single breath-hold ShMOLLI T1 mapping can measure ECV by EQ-CMR across the spectrum of interstitial expansion. It is procedurally better tolerated, slightly more reproducible and better correlates with histology compared to the older multibreath-hold FLASH techniques.


Heart | 2008

Quantifying the paradoxical effect of higher systolic blood pressure on mortality in chronic heart failure

Claire E. Raphael; Zachary I. Whinnett; Justin E. Davies; Marianna Fontana; Emily A. Ferenczi; Charlotte Manisty; Jamil Mayet; Darrel P. Francis

Background: Although higher blood pressures are generally recognised to be an adverse prognostic marker in risk assessment of cardiology patients, its relationship to risk in chronic heart failure (CHF) may be different. Objective: To examine systematically published reports on the relationship between blood pressure and mortality in CHF. Methods: Medline and Embase were used to identify studies that gave a hazard or relative risk ratio for systolic blood pressure in a stable population with CHF. Included studies were analysed to obtain a unified hazard ratio and quantify the degree of confidence. Results: 10 studies met the inclusion criteria, giving a total population of 8088, with 29 222 person-years of follow-up. All studies showed that a higher systolic blood pressure (SBP) was a favourable prognostic marker in CHF, in contrast to the general population where it is an indicator of poorer prognosis. The decrease in mortality rates associated with a 10 mm Hg higher SBP was 13.0% (95% CI 10.6% to 15.4%) in the heart failure population. This was not related to aetiology, ACE inhibitor or β blocker use. Conclusion: SBP is an easily measured, continuous variable that has a remarkably consistent relationship with mortality within the CHF population. The potential of this simple variable in outpatient assessment of patients with CHF should not be neglected. One possible application of this information is in the optimisation of cardiac resynchronisation devices.

Collaboration


Dive into the Marianna Fontana's collaboration.

Top Co-Authors

Avatar

James C. Moon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol J. Whelan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviana Maestrini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Peter Kellman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge