Marianna Kruithof-de Julio
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marianna Kruithof-de Julio.
Cancer Science | 2013
Qi Li; Xing Gu; Honglei Weng; Shahrouz Ghafoory; Yan Liu; Teng Feng; Johanna Dzieran; Li Li; Iryna Ilkavets; Marianna Kruithof-de Julio; Stefan Munker; Alexander Marx; Albrecht Piiper; Eduardo Augusto Alonso; Norbert Gretz; Chunfang Gao; Stefan Wölfl; Steven Dooley; Katja Breitkopf-Heinlein
Epithelial‐mesenchymal transition (EMT) is an important mechanism to initiate cancer invasion and metastasis. Bone morphogenetic protein (BMP)‐9 is a member of the transforming growth factor (TGF)‐β superfamily. It has been suggested to play a role in cancer development in some non‐hepatic tumors. In the present study, two hepatocellular carcinoma (HCC) lines, HLE and HepG2, were treated with BMP‐9 in vitro, and phenotypic changes and cell motility were analyzed. In situ hybridization (ISH) and immunohistochemical analyses were performed with human HCC tissue samples in order to assess expression levels of BMP‐9. In vivo, BMP‐9 protein and mRNA were expressed in all the tested patients to diverse degrees. At the protein level, mildly positive (1 + ) BMP‐9 staining could be observed in 25/41 (61%), and moderately to strongly positive (2 + ) in 16/41 (39%) of the patients. In 27/41 (65%) patients, the BMP‐9 protein expression level was consistent with the mRNA expression level as measured by ISH. In those patients with 2 + protein level, nuclear pSmad1 expression in cancer cells was also significantly increased. Expression of BMP‐9 was positively related to nuclear Snail expression and reversely correlated to cell surface E‐cadherin expression, although this did not reach statistical significance. Expression levels of BMP‐9 were significantly associated with the T stages of the investigated tumors and high levels of BMP‐9 were detected by immunofluorescence especially at the tumor borders in samples from an HCC mouse model. In vitro, BMP‐9 treatment caused a reduction of E‐cadherin and ZO‐1 and an induction of Vimentin and Snail expression. Furthermore, cell migration was enhanced by BMP‐9 in both HCC cell lines. These results imply that EMT induced by BMP‐9 is related to invasiveness of HCC.
Journal of Oncology | 2015
E. Zoni; Gabri van der Pluijm; Peter C. Gray; Marianna Kruithof-de Julio
Epithelial-to-mesenchymal transition (EMT) is a reversible process by which cancer cells can switch from a sessile epithelial phenotype to an invasive mesenchymal state. EMT enables tumor cells to become invasive, intravasate, survive in the circulation, extravasate, and colonize distant sites. Paracrine heterotypic stroma-derived signals as well as paracrine homotypic or autocrine signals can mediate oncogenic EMT and contribute to the acquisition of stem/progenitor cell properties, expansion of cancer stem cells, development of therapy resistance, and often lethal metastatic disease. EMT is regulated by a variety of stimuli that trigger specific intracellular signalling pathways. Altered microRNA (miR) expression and perturbed signalling pathways have been associated with epithelial plasticity, including oncogenic EMT. In this review we analyse and describe the interaction between experimentally validated miRs and their target genes in TGF-β, Notch, and Wnt signalling pathways. Interestingly, in this process, we identified a “signature” of 30 experimentally validated miRs and a cluster of validated target genes that seem to mediate the cross talk between TGF-β, Notch, and Wnt signalling networks during EMT and reinforce their connection to the regulation of epithelial plasticity in health and disease.
Current Pharmaceutical Design | 2012
Sofia Karkampouna; Peter ten Dijke; Steven Dooley; Marianna Kruithof-de Julio
Adult organ regeneration occurs in many systems such as in liver, skin, intestine and heart, indicating that postnatal life is not a static or quiescent state but a dynamic and complex process. The liver is a spectacular organ, exhibiting high regenerative capacity crucial for homeostasis and tissue repair: injuries induced mechanically or chemically, can be completely restored. Regeneration involves extensive cell division, inflammation and extracellular matrix remodeling processes. At the molecular level, one of the key mediators of regeneration response is the secreted cytokine transforming growth factor-β (TGFβ). TGFβ is a profibrogenic and anti-proliferative protein with pleiotropic functions depending on the cellular context. In this review, we discuss the role of TGFβ in the development of the liver and in adult liver regeneration, with particular emphasis on its role in regulation of hepatocyte regeneration and in hepatic progenitor cell-induced regeneration. Finally, we give an overview of the current direction of liver research towards cell replacement therapies.
Molecular therapy. Nucleic acids | 2014
Sofia Karkampouna; Boudewijn P.T. Kruithof; Peter Kloen; Miryam C. Obdeijn; Annelies M. A. van der Laan; Hans J. Tanke; Dwi U. Kemaladewi; Willem M.H. Hoogaars; Peter A. C. 't Hoen; Annemieke Aartsma-Rus; Ian M. Clark; Peter ten Dijke; Marie-José Goumans; Marianna Kruithof-de Julio
Dupuytrens disease (DD) is a benign fibroproliferative disease of the hand. It is characterized by the excessive production of extracellular matrix (ECM) proteins, which form a strong fibrous tissue between the handpalm and fingers, permanently disrupting the fine movement ability. The major contractile element in DD is the myofibroblast (MFB). This cell has both fibroblast and smooth muscle cell-type characteristics and causes pathological collagen deposition. MFBs generate contractile forces that are transmitted to the surrounding collagen matrix. Μajor profibrotic factors are members of the transforming growth factor-β (TGFβ) pathway which directly regulate the expression levels of several fibrous proteins such as collagen type 1, type 3, and α-smooth muscle actin. Molecular modulation of this signaling pathway could serve as a therapeutic approach. We, therefore, have developed an ex vivo “clinical trial” system to study the properties of intact, patient-derived resection specimens. In these culture conditions, Dupuytrens tissue retains its three-dimensional (3D) structure and viability. As a novel antifibrotic therapeutic approach, we targeted TGFβ type 1 receptor (also termed activin receptor-like kinase 5) expression in cultured Dupuytrens specimens by antisense oligonucleotide-mediated exon skipping. Antisense oligonucleotides targeting activin receptor-like kinase 5 showed specific reduction of ECM and potential for clinical application.
Development Growth & Differentiation | 2013
Asja T. Moerkamp; Agnieszka Paca; Marie-José Goumans; Tilo Kunath; Boudewijn P.T. Kruithof; Marianna Kruithof-de Julio
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.
bonekey Reports | 2016
Jinlu Dai; Janine Hensel; Ning Wang; Marianna Kruithof-de Julio; Yusuke Shiozawa
Once tumor cells metastasize to the bone, the prognosis for prostate cancer patients is generally very poor. The mechanisms involved in bone metastasis, however, remain elusive, because of lack of relevant animal models. In this manuscript, we describe step-by-step protocols for the xenograft mouse models that are currently used for studying prostate cancer bone metastasis. The different routes of tumor inoculation (intraosseous, intracardiac, intravenous and orthotopic) presented are useful for exploring the biology of bone metastasis.
The Journal of Pathology | 2015
Jeroen T. Buijs; Kasia M Matula; Henry Cheung; Marianna Kruithof-de Julio; Maaike H. van der Mark; T. J. A. Snoeks; Ron Cohen; Willem E. Corver; Khalid S. Mohammad; Jos Jonkers; Theresa A. Guise; Gabri van der Pluijm
Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80–90% and 10–15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E‐cadherin and p53 in a conditional K14cre;Cdh1(F/F);Trp53(F/F) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD‐208 (60 mg/kg per day), an orally available TGFβ receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD‐208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD‐208 treatment reduced TGFβ signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti‐tumour effects of TGFβ. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events.
BMC Medical Genomics | 2015
Scott M. Riester; Diren Arsoy; Emily T. Camilleri; Amel Dudakovic; Christopher R. Paradise; Jared M. Evans; Jorge Torres-Mora; Marco Rizzo; Peter Kloen; Marianna Kruithof-de Julio; Andre J. van Wijnen; Sanjeev Kakar
BackgroundDupuytren’s disease is an inherited disorder in which patients develop fibrotic contractures of the hand. Current treatment strategies include surgical excision or enzymatic digestion of fibrotic tissue. MicroRNAs, which are key posttranscriptional regulators of genes expression, have been shown to play an important regulatory role in disorders of fibrosis. Therefore in this investigation, we apply high throughput next generation RNA sequencing strategies to characterize microRNA expression in diseased and healthy palmar fascia to elucidate molecular mechanisms responsible for pathogenic fibrosis.MethodsWe applied high throughput RNA sequencing techniques to quantify the expression of all known human microRNAs in Dupuytren’s and control palmar fascia. MicroRNAs that were differentially expressed between diseased and healthy tissue samples were used for computational target prediction using the bioinformatics tool ComiR. Molecular pathways that were predicted to be differentially expressed based on computational analysis were validated by performing RT-qPCR on RNA extracted from diseased and non-diseased palmar fascia biopsies.ResultsA comparison of microRNAs expressed in Dupuytren’s fascia and control fascia identified 74 microRNAs with a 2-fold enrichment in Dupuytren’s tissue, and 32 microRNAs with enrichment in control fascia. Computational target prediction for differentially expressed microRNAs indicated preferential targeting of collagens and extracellular matrix related proteins in control palmar fascia. RT-qPCR confirmed the decreased expression of microRNA targeted collagens in control palmar fascia tissues.DiscussionControl palmar fascia show decreased expression of mRNAs encoding collagens that are preferentially targeted by microRNAs enriched in non-diseased fascia. Thus alterations in microRNA regulatory networks may play an important role in driving the pathogenic fibrosis seen in Dupuytren’s disease via direct regulatory effects on extracellular matrix protein synthesis.ConclusionDupuytren’s fascia and healthy palmar fascia can be distinguished by unique microRNA profiles, which are predicted to preferentially target collagens and other extracellular matrix proteins.Dupuytren’s disease is an inherited disorder in which patients develop fibrotic contractures of the hand. Current treatment strategies include surgical excision or enzymatic digestion of fibrotic tissue. MicroRNAs, which are key posttranscriptional regulators of genes expression, have been shown to play an important regulatory role in disorders of fibrosis. Therefore in this investigation, we apply high throughput next generation RNA sequencing strategies to characterize microRNA expression in diseased and healthy palmar fascia to elucidate molecular mechanisms responsible for pathogenic fibrosis. We applied high throughput RNA sequencing techniques to quantify the expression of all known human microRNAs in Dupuytren’s and control palmar fascia. MicroRNAs that were differentially expressed between diseased and healthy tissue samples were used for computational target prediction using the bioinformatics tool ComiR. Molecular pathways that were predicted to be differentially expressed based on computational analysis were validated by performing RT-qPCR on RNA extracted from diseased and non-diseased palmar fascia biopsies. A comparison of microRNAs expressed in Dupuytren’s fascia and control fascia identified 74 microRNAs with a 2-fold enrichment in Dupuytren’s tissue, and 32 microRNAs with enrichment in control fascia. Computational target prediction for differentially expressed microRNAs indicated preferential targeting of collagens and extracellular matrix related proteins in control palmar fascia. RT-qPCR confirmed the decreased expression of microRNA targeted collagens in control palmar fascia tissues. Control palmar fascia show decreased expression of mRNAs encoding collagens that are preferentially targeted by microRNAs enriched in non-diseased fascia. Thus alterations in microRNA regulatory networks may play an important role in driving the pathogenic fibrosis seen in Dupuytren’s disease via direct regulatory effects on extracellular matrix protein synthesis. Dupuytren’s fascia and healthy palmar fascia can be distinguished by unique microRNA profiles, which are predicted to preferentially target collagens and other extracellular matrix proteins.
The Journal of Pathology | 2018
Sofia Karkampouna; Danny van der Helm; Peter C. Gray; Lanpeng Chen; Irena Klima; Joel Grosjean; Mark C. Burgmans; Arantza Farina-Sarasqueta; Ewa Snaar-Jagalska; Deborah Stroka; Luigi Terracciano; Bart van Hoek; Alexander F. Schaapherder; Susan Osanto; George N. Thalmann; Hein W. Verspaget; Minneke J. Coenraad; Marianna Kruithof-de Julio
Hepatocellular carcinoma (HCC) is the third leading cause of cancer‐related death worldwide. Despite increasing treatment options for this disease, prognosis remains poor. CRIPTO (TDGF1) protein is expressed at high levels in several human tumours and promotes oncogenic phenotype. Its expression has been correlated to poor prognosis in HCC. In this study, we aimed to elucidate the basis for the effects of CRIPTO in HCC. We investigated CRIPTO expression levels in three cohorts of clinical cirrhotic and HCC specimens. We addressed the role of CRIPTO in hepatic tumourigenesis using Cre‐loxP‐controlled lentiviral vectors expressing CRIPTO in cell line‐derived xenografts. Responses to standard treatments (sorafenib, doxorubicin) were assessed directly on xenograft‐derived ex vivo tumour slices. CRIPTO‐overexpressing patient‐derived xenografts were established and used for ex vivo drug response assays. The effects of sorafenib and doxorubicin treatment in combination with a CRIPTO pathway inhibitor were tested in ex vivo cultures of xenograft models and 3D cultures. CRIPTO protein was found highly expressed in human cirrhosis and hepatocellular carcinoma specimens but not in those of healthy participants. Stable overexpression of CRIPTO in human HepG2 cells caused epithelial‐to‐mesenchymal transition, increased expression of cancer stem cell markers, and enhanced cell proliferation and migration. HepG2‐CRIPTO cells formed tumours when injected into immune‐compromised mice, whereas HepG2 cells lacking stable CRIPTO overexpression did not. High‐level CRIPTO expression in xenograft models was associated with resistance to sorafenib, which could be modulated using a CRIPTO pathway inhibitor in ex vivo tumour slices. Our data suggest that a subgroup of CRIPTO‐expressing HCC patients may benefit from a combinatorial treatment scheme and that sorafenib resistance may be circumvented by inhibition of the CRIPTO pathway. Copyright
Journal of Visualized Experiments | 2015
Boudewijn P.T. Kruithof; Samuel C. Lieber; Marianna Kruithof-de Julio; Vincian Gaussin; Marie-José Goumans
Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.