Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Pauletto is active.

Publication


Featured researches published by Marianna Pauletto.


Environmental Pollution | 2015

Pollutants bioavailability and toxicological risk from microplastics to marine mussels.

Carlo Giacomo Avio; Stefania Gorbi; Massimo Milan; Maura Benedetti; Daniele Fattorini; Giuseppe d'Errico; Marianna Pauletto; Luca Bargelloni; Francesco Regoli

Microplastics represent a growing environmental concern for the oceans due to their potential of adsorbing chemical pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polyethylene (PE) and polystyrene (PS) microplastics were shown to adsorb pyrene with a time and dose-dependent relationship. Results also indicated a marked capability of contaminated microplastics to transfer this model PAH to exposed mussels Mytilus galloprovincialis; tissue localization of microplastics occurred in haemolymph, gills and especially digestive tissues where a marked accumulation of pyrene was also observed. Cellular effects included alterations of immunological responses, lysosomal compartment, peroxisomal proliferation, antioxidant system, neurotoxic effects, onset of genotoxicity; changes in gene expression profile was also demonstrated through a new DNA microarray platform. The study provided the evidence that microplastics adsorb PAHs, emphasizing an elevated bioavailability of these chemicals after the ingestion, and the toxicological implications due to responsiveness of several molecular and cellular pathways to microplastics.


Environmental Pollution | 2015

Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon

Massimo Milan; Marianna Pauletto; L. Boffo; Claudio Carrer; F. Sorrentino; G. Ferrari; L. Pavan; Tomaso Patarnello; Luca Bargelloni

The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment.


PLOS ONE | 2014

A Microarray-Based Analysis of Gametogenesis in Two Portuguese Populations of the European Clam Ruditapes decussatus

Joana Teixeira de Sousa; Massimo Milan; Luca Bargelloni; Marianna Pauletto; Domitília Matias; Sandra Joaquim; Ana Margarete Matias; Virgile Quillien; Alexandra Leitão; Arnaud Huvet

The European clam, Ruditapes decussatus is a species with a high commercial importance in Portugal and other Southern European countries. Its production is almost exclusively based on natural recruitment, which is subject to high annual fluctuations. Increased knowledge of the natural reproductive cycle of R. decussatus and its molecular mechanisms would be particularly important in providing new highly valuable genomic information for better understanding the regulation of reproduction in this economically important aquaculture species. In this study, the transcriptomic bases of R. decussatus reproduction have been analysed using a custom oligonucleotide microarray representing 51,678 assembled contigs. Microarray analyses were performed in four gonadal maturation stages from two different Portuguese wild populations, characterized by different responses to spawning induction when used as progenitors in hatchery. A comparison between the two populations elucidated a specific pathway involved in the recognition signals and binding between the oocyte and components of the sperm plasma membrane. We suggest that this pathway can explain part of the differences in terms of spawning induction success between the two populations. In addition, sexes and reproductive stages were compared and a correlation between mRNA levels and gonadal area was investigated. The lists of differentially expressed genes revealed that sex explains most of the variance in gonadal gene expression. Additionally, genes like Foxl2, vitellogenin, condensing 2, mitotic apparatus protein p62, Cep57, sperm associated antigens 6, 16 and 17, motile sperm domain containing protein 2, sperm surface protein Sp17, sperm flagellar proteins 1 and 2 and dpy-30, were identified as being correlated with the gonad area and therefore supposedly with the number and/or the size of the gametes produced.


PLOS ONE | 2014

Insights into Molecular Features of Venerupis decussata Oocytes: A Microarray-Based Study

Marianna Pauletto; Massimo Milan; Joana Teixeira de Sousa; Arnaud Huvet; Sandra Joaquim; Domitília Matias; Alexandra Leitão; Tomaso Patarnello; Luca Bargelloni

The production of Venerupis decussata relies on wild seed collection, which has been recently compromised due to recruitment failure and severe mortalities. To address this issue and provide an alternative source of seed, artificial spawning and larval rearing programs were developed. However, hatchery-based seed production is a relatively new industry and it is still underdeveloped. A major hurdle in the European clam seed production is the control of spawning and reproduction, which is further hindered by the impossibility of obtaining fertile gametes by gonadal “stripping”, as meiosis re-initiation is constrained to a maturation process along the genital ducts. In the present study, oocytes were collected from 15 females and microarray analyses was performed to investigate gene expression profiles characterizing released and stripped ovarian oocytes. A total of 198 differentially expressed transcripts between stripped and spawned oocytes were detected. Functional analysis carried out on these transcripts highlighted the importance of a few biological processes, which are most probably implicated in the control of oocyte competence. Significant differences were observed for transcripts encoding proteins involved in meiosis progression (e.g. dual specificity phosphatase CDC25), WNT signalling (e.g. frizzled class receptor 8, wingless-type MMTV integration site family member 4), steroid synthesis (e.g. progestin and adipoQ receptor family member 3, cytochrome P450-C17), mRNA processing (e.g. zinc finger protein XlCOF28), calcium regulation (e.g. regucalcin, calmodulin) and ceramide metabolism (ceramidase B, sphingomyelinase). This study provides new information on transcriptional profiles putatively associated with ovarian egg infertility, and suggests potential mechanisms regulating early oocyte development in clams. Genes which were differentially expressed between stripped and spawned oocytes might have a pivotal role during maturation process in the gonadal duct and could be interesting targets for further functional studies aiming to make ovarian oocytes fertilizable.


Scientific Reports | 2017

The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

Andrea Cristina Basso; Massimiliano Babbucci; Marianna Pauletto; Emilio Riginella; Tomaso Patarnello; Enrico Negrisolo

We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both α- and β-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the β-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis.


Scientific Reports | 2017

Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas

Maxime Lafont; Bruno Petton; Agnès Vergnes; Marianna Pauletto; Amélie Segarra; Benjamin Gourbal; Caroline Montagnani

In the last decade, a paradigm shift has emerged in comparative immunology. Invertebrates can no longer be considered to be devoid of specific recognition and immune memory. However, we still lack a comprehensive view of these phenomena and their molecular mechanisms across phyla, especially in terms of duration, specificity, and efficiency in a natural context. In this study, we focused on a Lophotrochozoan/virus interaction, as antiviral priming is mostly overlooked in molluscs. Juvenile Crassostrea gigas oysters experience reoccurring mass mortalities events from Ostreid herpes virus 1 with no existing therapeutic treatment. Our results showed that various nucleic acid injections can prime oysters to trigger an antiviral state ultimately protecting them against a subsequent viral infection. Focusing on poly(I:C) as elicitor, we evidenced that it protected from an environmental infection, by mitigating viral replication. That protection seemed to induce a specific antiviral response as poly(I:C) fails to protect against a pathogenic bacteria. Finally, we showed that this phenomenon was long-lasting, persisting for at least 5 months thus suggesting for the first time the existence of innate immune memory in this invertebrate species. This study strengthens the emerging hypotheses about the broad conservation of innate immune priming and memory mechanisms in Lophotrochozoans.


Developmental and Comparative Immunology | 2018

Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny

Rebeca Moreira; Patricia Pereiro; Pablo Balseiro; Massimo Milan; Marianna Pauletto; Luca Bargelloni; Beatriz Novoa; Antonio Figueras

&NA; Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.‐ the progressive loss of RNA of maternal origin through larval development and 2.‐ the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non‐essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.


PLOS ONE | 2017

Transcriptomic features of Pecten maximus oocyte quality and maturation

Marianna Pauletto; Massimo Milan; Arnaud Huvet; Charlotte Corporeau; Marc Suquet; Josep V. Planas; Rebeca Moreira; Antonio Figueras; Beatriz Novoa; Tomaso Patarnello; Luca Bargelloni

The king scallop Pecten maximus is a high valuable species of great interest in Europe for both fishery and aquaculture. Notably, there has been an increased investment to produce seed for enhancement programmes of wild scallop populations. However, hatchery production is a relatively new industry and it is still underdeveloped. Major hurdles are spawning control and gamete quality. In the present study, a total of 14 scallops were sampled in the bay of Brest (Brittany, France) to compare transcriptomic profiles of mature oocytes collected by spawning induction or by stripping. To reach such a goal, a microarray analysis was performed by using a custom 8x60K oligonucleotide microarray representing 45,488 unique scallop contigs. First we identified genes that were differentially expressed depending on oocyte quality, estimated as the potential to produce D-larvae. Secondly, we investigated the transcriptional features of both stripped and spawned oocytes. Genes coding for proteins involved in cytoskeletal dynamics, serine/threonine kinases signalling pathway, mRNA processing, response to DNA damage, apoptosis and cell-cycle appeared to be of crucial importance for both oocyte maturation and developmental competence. This study allowed us to dramatically increase the knowledge about transcriptional features of oocyte quality and maturation, as well as to propose for the first time putative molecular markers to solve a major bottleneck in scallop aquaculture.


Molecular Ecology Resources | 2016

Extending RAD tag analysis to microbial ecology: a comparison between MultiLocus Sequence Typing and 2b-RAD to investigate Listeria monocytogenes genetic structure

Marianna Pauletto; Lisa Carraro; Massimiliano Babbucci; Rosaria Lucchini; Luca Bargelloni

The advent of next‐generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole‐genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst) are quite laborious and time‐consuming, especially for large‐scale analyses. In this study, a genotyping approach based on restriction site‐associated (RAD) tag sequencing, 2b‐RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b‐RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food‐processing sites. The obtained results demonstrate that 2b‐RAD predicts mlst types and often provides more detailed information on population structure than mlst. Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large‐scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b‐RAD analysis proposed here.


The Journal of Experimental Biology | 2017

Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication

Marianna Pauletto; Ameíie Segarra; Caroline Montagnani; Virgile Quillien; Nicole Faury; Jacqueline Le Grand; Philippe Miner; Bruno Petton; Yannick Labreuche; Elodie Fleury; Caroline Fabioux; Luca Bargelloni; Tristan Renault; Arnaud Huvet

ABSTRACT Double-stranded RNA (dsRNA)-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve (Crassostrea gigas), as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of oyster mass mortality events, as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and green fluorescent protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA-injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared with infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the specific role of Cg-IκB2. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR and Cg-IAP appeared activated in the dsRNA-injected condition, potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need for new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves. Summary: Double-stranded ribonucleic acid (dsRNA) injection in the Pacific oyster induced an anti-viral state controlling ostreid herpesvirus 1 replication and precluding the understanding of the role of the inhibitor of nuclear factor-κB, Cg-IκB2.

Collaboration


Dive into the Marianna Pauletto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Figueras

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Novoa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge