Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne de Visser is active.

Publication


Featured researches published by Marianne de Visser.


Neuromuscular Disorders | 2004

119th ENMC international workshop: Trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands

Jessica E. Hoogendijk; Anthony A. Amato; Bryan Lecky; Ernest Choy; Ingrid E. Lundberg; Michael R. Rose; Jiri Vencovsky; Marianne de Visser; Richard Hughes

Department of Neurology, University Medical Center, Heidelberg laan 100, Utrecht, CX 3584, The Netherlands Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA The Walton Centre for Neurology and Neurosurgery, Liverpool, UK Department of Rheumatology, King’s College Hospital, London, UK Rheumatology Unit, Department of Medicine, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden King’s Neurosciences Centre, King’s College Hospital, London, UK Institute of Rheumatology, Prague, Czech Republic Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands Department of Clinical Neurosciences, Guy’s, King’s and Thomas’ School of Medicine, London, UK


Nature Genetics | 2012

Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2

Richard J.L.F. Lemmers; Rabi Tawil; Lisa M. Petek; Judit Balog; Gregory J. Block; Gijs W.E. Santen; Amanda M. Amell; Patrick J. van der Vliet; Rowida Almomani; Kirsten R. Straasheijm; Yvonne D. Krom; Rinse Klooster; Yu-chun Sun; Johan T. den Dunnen; Quinta Helmer; Colleen M. Donlin-Smith; George W. Padberg; Baziel G.M. van Engelen; Jessica C. de Greef; Annemieke Aartsma-Rus; Rune R. Frants; Marianne de Visser; Claude Desnuelle; Sabrina Sacconi; Galina N. Filippova; Bert Bakker; Michael J. Bamshad; Stephen J. Tapscott; Daniel G. Miller; Silvère M. van der Maarel

Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.


Nature Genetics | 2009

Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis

Michael A. van Es; Jan H. Veldink; Christiaan G.J. Saris; Hylke M. Blauw; Paul W.J. van Vught; Anna Birve; Robin Lemmens; Helenius J. Schelhaas; Ewout J.N. Groen; Mark H. B. Huisman; Anneke J. van der Kooi; Marianne de Visser; Caroline Dahlberg; Karol Estrada; Fernando Rivadeneira; Albert Hofman; Machiel J. Zwarts; Perry T.C. van Doormaal; Dan Rujescu; Eric Strengman; Ina Giegling; Pierandrea Muglia; Barbara Tomik; Agnieszka Slowik; André G. Uitterlinden; Corinna Hendrich; Stefan Waibel; Thomas Meyer; Albert C. Ludolph; Jonathan D. Glass

We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 × 10−4 in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 × 10−9. This SNP showed robust replication in the second cohort (P = 1.86 × 10−6), and a combined analysis over the two stages yielded P = 2.53 × 10−14. The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 × 10−9, and rs3849942, with P = 1.01 × 10−8) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.


Annals of Neurology | 2006

Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2.

Stephan Züchner; Albena Jordanova; Kristl G. Claeys; Velina Guergueltcheva; Sylvia Cherninkova; Steven R. Hamilton; Greg Van Stavern; Karen M. Krajewski; Jeffery Stajich; I. Tournev; Kristien Verhoeven; C. T. Langerhorst; Marianne de Visser; Frank Baas; Bird Td; Vincent Timmerman; Michael E. Shy; Jeffery M. Vance

Charcot‐Marie‐Tooth (CMT) neuropathy with visual impairment due to optic atrophy has been designated as hereditary motor and sensory neuropathy type VI (HMSN VI). Reports of affected families have indicated autosomal dominant and recessive forms, but the genetic cause of this disease has remained elusive.


Annals of Neurology | 2003

A randomized sequential trial of creatine in amyotrophic lateral sclerosis

G. J. Groeneveld; Jan H. Veldink; Ingeborg van der Tweel; Sandra Kalmijn; Cornelis Beijer; Marianne de Visser; John H. J. Wokke; Hessel Franssen; Leonard H. van den Berg

Amyotrophic lateral sclerosis (ALS) is a fatal disease with no cure. In a transgenic mouse model of ALS, creatine monohydrate showed a promising increase in survival. We performed a double‐blind, placebo‐controlled, sequential clinical trial to assess the effect of creatine monohydrate on survival and disease progression in patients with ALS. Between June 2000 and December 2001, 175 patients with probable, probable‐laboratory supported, or definite ALS were randomly assigned to receive either creatine monohydrate or placebo 10gm daily. A sequential trial design was used with death, persistent assisted ventilation, or tracheostomy as primary end points. Secondary outcome measurements were rate of decline of isometric arm muscle strength, forced vital capacity, functional status, and quality of life. The trial was stopped when the null hypothesis of indifference was accepted. Creatine did not affect survival (cumulative survival probability of 0.70 in the creatine group vs 0.68 in the placebo group at 12 months, and 0.52 in the creatine group vs 0.47 in the placebo group at 16 months), or the rate of decline of functional measurements. Creatine intake did not cause important adverse reactions. This placebo‐controlled trial did not find evidence of a beneficial effect of creatine monohydrate on survival or disease progression in patients with ALS. Ann Neurol 2003;53:437–445


Neuromuscular Disorders | 2002

Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy

Kati Donner; Miina Ollikainen; Maaret Ridanpää; Hans-Jürgen Christen; Hans H. Goebel; Marianne de Visser; Katarina Pelin; Carina Wallgren-Pettersson

Abstract Nemaline myopathy is a clinically and genetically heterogeneous muscle disorder. In the nebulin gene we have detected a number of autosomal recessive mutations. Both autosomal dominant and recessive mutations have been detected in the genes for α-actin and α-tropomyosin 3. A recessive mutation causing nemaline myopathy among the Old Order Amish has recently been identified in the gene for slow skeletal muscle troponin T. As linkage studies had shown that at least one further gene exists for nemaline myopathy, we investigated another tropomyosin gene expressed in skeletal muscle, the β-tropomyosin 2 gene. Screening 66 unrelated patients, using single strand conformation polymorphism analysis and sequencing, we found four polymorphisms and two heterozygous missense mutations. Both mutations affect conserved amino acids, and in both cases, the mutant allele is expressed. We speculate that the observed mutations affect the formation of the tropomyosin dimer and its actin-binding properties.


Human Molecular Genetics | 2012

Evidence for an oligogenic basis of amyotrophic lateral sclerosis

Marka van Blitterswijk; Michael A. van Es; Eric A.M. Hennekam; Dennis Dooijes; Wouter van Rheenen; Jelena Medic; Pierre R. Bourque; Helenius J. Schelhaas; Anneke J. van der Kooi; Marianne de Visser; Paul I. W. de Bakker; Jan H. Veldink; Leonard H. van den Berg

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a substantial heritable component. In pedigrees affected by its familial form, incomplete penetrance is often observed. We hypothesized that this could be caused by a complex inheritance of risk variants in multiple genes. Therefore, we screened 111 familial ALS (FALS) patients from 97 families, and large cohorts of sporadic ALS (SALS) patients and control subjects for mutations in TAR DNA-binding protein (TARDBP), fused in sarcoma/translated in liposarcoma (FUS/TLS), superoxide dismutase-1 (SOD1), angiogenin (ANG) and chromosome 9 open reading frame 72 (C9orf72). Mutations were identified in 48% of FALS families, 8% of SALS patients and 0.5% of control subjects. In five of the FALS families, we identified multiple mutations in ALS-associated genes. We detected FUS/TLS and TARDBP mutations in combination with ANG mutations, and C9orf72 repeat expansions with TARDBP, SOD1 and FUS/TLS mutations. Statistical analysis demonstrated that the presence of multiple mutations in FALS is in excess of what is to be expected by chance (P = 1.57 × 10(-7)). The most compelling evidence for an oligogenic basis was found in individuals with a p.N352S mutation in TARDBP, detected in five FALS families and three apparently SALS patients. Genealogical and haplotype analyses revealed that these individuals shared a common ancestor. We obtained DNA of 14 patients with this TARDBP mutation, 50% of whom had an additional mutation (ANG, C9orf72 or homozygous TARDBP). Hereby, we provide evidence for an oligogenic aetiology of ALS. This may have important implications for the interpretation of whole exome/genome experiments designed to identify new ALS-associated genes and for genetic counselling, especially of unaffected family members.


American Journal of Human Genetics | 2010

Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies

V. Bolduc; Gareth Marlow; Kym M. Boycott; Khalil Saleki; Hiroshi Inoue; Johan T. M. Kroon; Mitsuo Itakura; Yves Robitaille; Lucie Parent; Frank Baas; Kuniko Mizuta; Nobuyuki Kamata; Isabelle Richard; W. H. J. P. Linssen; Ibrahim Mahjneh; Marianne de Visser; Rumaisa Bashir; Bernard Brais

The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual, defective membrane repair was documented on fibroblasts by membrane-resealing ability assays, as observed in dysferlinopathies. Though the function of the ANO5 protein is still unknown, its putative calcium-activated chloride channel function may lead to important insights into the role of deficient skeletal muscle membrane repair in muscular dystrophies.


Orphanet Journal of Rare Diseases | 2012

X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management

Marc Engelen; Marianne de Visser; Björn M. van Geel; Patrick Aubourg; Bwee Tien Poll-The

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal membrane protein ALDP which is involved in the transmembrane transport of very long-chain fatty acids (VLCFA; ≥C22). A defect in ALDP results in elevated levels of VLCFA in plasma and tissues. The clinical spectrum in males with X-ALD ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. The majority of heterozygous females will develop symptoms by the age of 60 years. In individual patients the disease course remains unpredictable. This review focuses on the diagnosis and management of patients with X-ALD and provides a guideline for clinicians that encounter patients with this highly complex disorder.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.

Collaboration


Dive into the Marianne de Visser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter A. van Doorn

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Baas

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid E. Lundberg

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge