Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Holmer is active.

Publication


Featured researches published by Marianne Holmer.


Geochimica et Cosmochimica Acta | 2001

Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3−, and SO42−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation

Erik Kristensen; Marianne Holmer

Carbon mineralization of fresh and aged diatoms (Skeletonema costatum) and barley hay (Hordeum vulgare) was followed for 23 to 35 d in sandy and silty sediment. By the use of a thin-layer flow-through technique, it was possible to expose the sediment selectively for oxygen, nitrate or sulfate as electron acceptors in the terminal oxidation of organic carbon. Decomposition took place in two basic stages. Mineralization of the rapidly leachable fraction of the fresh materials occurred rapidly and with the same constant rate regardless of the electron acceptor available, indicating that the dissolved organic carbon released initially was labile and readily available for all heterotrophic respirers. In the case of diatoms, decay of the remaining, more refractory, particulate fraction of fresh and aged diatoms were strikingly similar, although both were degraded 5 to 10 times faster under oxic than anoxic conditions. Most of the particulate remains of diatoms after leaching apparently belong to one fraction, which maintains the same degradability even after prolonged aging. With respect to hay, the late divergence in rates of aerobic and anaerobic decay (a factor of 4 to 5 for aged hay only after 20 d) indicated that the larger hay particles (<500 μm) became exhausted in labile organic matter much slower through time than fine-particulate diatoms (∼20 μm). Anaerobic carbon mineralization rates of diatoms and hay particulates with sulfate and nitrate as electron acceptors were similar or up to two times faster with sulfate. The generally low levels of dissolved organic carbon in all incubations after the initial leaching phase suggest that the limiting step of decomposition under both aerobic and anaerobic decay is the initial hydrolytic attack on the complex particulate remains. Based on a volumetric model, we show that the exposure of anoxic subsurface sediment containing partly degraded organic material to oxygen via irrigated worm burrows or by reworking may significantly enhance total sediment carbon oxidation. The enhancement in the irrigation case increases linearly with density (up to 80%) and is higher than the density-independent enhancement (10%) in the reworking case when abundance is above a lower limit of ∼400 individuals/m2.


Biogeochemistry | 1996

Seasonality of sulfate reduction and pore water solutes in a marine fish farm sediment: the importance of temperature and sedimentary organic matter

Marianne Holmer; Erik Kristensen

Sulfate reduction and pore water solutes related to sulfur cycling and anaerobic processes (short chain fatty acids (SCFA), SO42−, TCO2, NH4+, dissolved sulfides (∑H2S) and CH4) were examined during one year at a marine fish farm. Mineralization of fish farm waste products was rapid in this non-bioturbated, organic rich sediment. Stimulation of sulfate reduction rates (SRR) occurred primarily in the surface layers where the organic matter was deposited. Acetate was the most important (<99%) of the measured SCFA attaining high concentrations during summer months (up to 4.7 mM). The acetate profiles exhibited distinct seasonal cycles, where periods with high concentrations in the pore waters were found coincident with a high pool of particulate organic matter in the surface sediments and a low activity of the sulfate reducing bacteria (early spring and late summer). Periods with low acetate pools occurred when sulfate reduction rates were high in early summer and in winter were pools of particulate organic matter were decreasing. Methane production was observed concurrent with sulfate reduction in the microbial active surface layers in late summer. Subsurface peaks of SO42−, TCO2, NH4+ and ∑H2S were evident in July and August due to rapid mineralization in these surface layers. With decreasing autumn water temperatures mineralization rates declined and subsurface peaks of these solutes disappeared. A strong relationship was found between pore water TCO2, and NH4+. Ratios between TCO2, and NH4+ were low compared to a control site, attaining minimum values in mid-summer. This indicated rapid nitrogen mineralization of nitrogen rich labile substrates in the fish farm sediment during the entire season.


Environmental Conservation | 2002

Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain)

Núria Marbà; Carlos M. Duarte; Marianne Holmer; Regino Martínez; Gotzon Basterretxea; Alejandro Orfila; Antoni Jordi; Joaquín Tintoré

Posidonia oceanica, the dominant seagrass species in the Mediterranean, appears to be experiencing widespread loss. Efforts to conserve Posidonia oceanica are increasing, as reflected in the increase in the number of marine protected areas in the Mediterranean. However, the effectiveness of these measures to conserve seagrass meadows is unknown. In this study, the present status of the Posidonia oceanica meadows in the Cabrera National Park (Mediterranean), the only marine national park in Spain, was assessed, and the effectiveness of the conservation measures adopted was tested. This was done by reconstruction of past and present growth, quantification of the demographic status of the established meadows, and quantification of patch formation and growth rates in areas where recolonization is occurring. The meadows extended from 1-43m deep at Santa Maria bay and from 1-33 m at Es Port. Leaf production rate of the stands examined ranged between 6.5 and 7.8 leaves shoot -1 yr -1 , with higher rates in Santa Maria than in Es Port. Vertical rhizomes elongated at rates ranging from 5.39-10.12 mm yr -1 , annual vertical growth in Santa Maria stands being larger than that in the stands developing at Es Port. Horizontal rhizomes elongated slowly (from 2.6-6.1 cm yr -1 ), and branching was sparse (<0.25 branches yr -1 axis -1 ), with maximum elongation and branching rates in areas where patches were actively colonizing. Flowering was a rare event in all the stands (<0.015 flowers shoot -1 yr -1 ). Patch formation and patch growth rates in active colonizing areas were slow, but they increased after implementation of mooring regulations in the Park. Similarly, the leaf production tended to increase, and vertical rhizome growth to decrease, in both bays following the onset of regulation measures. However, the decrease in vertical growth detected was greater at Santa Maria, where access is prohibited to visitors, than at Es Port, where boats are allowed to moor, attached to permanent weights. Shoot mortality rate was generally low (mean 0.10 ± 0.02 In units yr -1 ) but exceeded the recruitment rate (<0.009 and 0.17 In units yr -1 ) in 55% of the meadows examined, indicative of negative net population growth rates. Regulation of mooring activities has improved the status of the P. oceanica meadows at Cabrera National Park. The demographic analysis, however, indicated that while P. oceanica meadows at Santa Maria are in good shape, those at Es Port seem to be compromised. The observed differences in meadow status reflect the large differences in circulation inside the bays (water residence time at Santa Maria = 4 days, water residence time at Es Port = 11 days) and the anthropogenic pressure both bays support.


Geochimica et Cosmochimica Acta | 1999

CARBOHYDRATE DYNAMICS AND CONTRIBUTIONS TO THE CARBON BUDGET OF AN ORGANIC-RICH COASTAL SEDIMENT

Carol Arnosti; Marianne Holmer

Abstract Potential hydrolysis rates of three different polysaccharides, pullulan, laminarin, and xylan, were measured in intact sediment cores from Cape Lookout Bight, North Carolina, in order to constrain the rates at which a fraction of the high-molecular-weight sedimentary carbon pool may be hydrolyzed to lower molecular weights. Potential hydrolysis rates of pullulan were somewhat higher than those of laminarin and xylan. Highest potential rates were measured in surface sediments; rates at depths of 5–7 and 14–16 cm differed relatively little from one another. Total dissolved carbohydrates, dissolved organic carbon (DOC), sulfate, and sulfate reduction rates were also measured and compared with data previously collected at Cape Lookout Bight in order to investigate carbohydrate dynamics and establish the relative contribution of carbohydrates to the sedimentary carbon budget. Total porewater carbohydrates constitute a disproportionate fraction of DOC, ranging from a maximum of 85% in near-surface intervals to 24% at depths of 14–16 cm. A comparison of potential hydrolysis rates, dissolved carbohydrate concentrations, DOC, and sulfate reduction rates, along with results from a wide range of studies previously conducted at this site suggests that hydrolysis of high-molecular-weight polysaccharides can potentially be very rapid relative to carbon remineralization rates. Dissolved porewater carbohydrates form a dynamic pool that is likely turned over on short timescales in Cape Lookout Bight sediments.


Biogeochemistry | 1994

Biogeochemical cycling of sulfur and iron in sediments of a south-east Asian mangrove, Phuket Island, Thailand

Marianne Holmer; Erik Kristensen; Gary T. Banta; Kim Hansen; Mikael Hjorth Jensen; Nipuvan Bussawarit

Benthic sulfate reduction and sediment pools of sulfur and iron were examined during January 1992 at 3 stations in the Ao Nam Bor mangrove, Phuket, Thailand. Patterns of sulfate reduction rates (0–53 cm) reflected differences in physical and biological conditions at the 3 stations, and highest rates were found at the vegetated site within the mangrove (Rhizophora apiculata) forest. Due to extended oxidation of mangrove sediments, a large portion of the added35S-label was recovered in the chromium reducible pools (FeS2 and S0) (41–91% of the reduced sulfur). Pyrite was the most important inorganic sulfur component, attaining pool sizes 50–100 times higher than acid volatile pools (FeS). HCl-extractable (0.5 M HCl) iron pools, including Fe(II)HCl and Fe(III)HCl, were generally low and Fe(III)HCl was only present in the upper surface layers (0–5 cm). Maximum concentrations of dissolved Fe2+ (35–285 μM) occurred just about the depth where dissolved ΣH2S accumulated. Furthermore Fe2+ and ΣH2S coexisted only where concentrations of both were low. There was an accumulation of organic sulfur in the deep sediment at 2 stations in the inner part of the mangrove. The reoxidation of reduced sulfides was rapid, and storage of sulfur was minor in the upper sediment layers, where factors like bioturbation, the presence of roots, or tidal mixing enhance oxidation processes.


Journal of Experimental Marine Biology and Ecology | 2002

Effect of shading of Zostera marina (eelgrass) on sulfur cycling in sediments with contrasting organic matter and sulfide pools

Marianne Holmer; Lone Laursen

Abstract Eelgrass Zostera marina was collected in spring and autumn from a light-saturated environment with low-organic sediments and a light-limited environment with organic-rich sediments in Denmark. The eelgrass and sediment responses to reduced light conditions were studied in 2-week shading experiments. Z. marina responded to reduced light conditions by decreasing growth rates and a loss of above-ground biomass. The spring plants were most sensitive to light reductions and the relative leaf elongation rates were reduced with up to 58% and the shoot densities with 33–36%. There was no difference in light response in relation to sediment organic matter contents. The sulfate reduction rates were reduced in the shaded low-organic sediments with up to 67%, whereas there was no effect of shading on rates in the organic-rich sediments. The lack of effect of shading in the organic-rich sediments was attributed to a limited coupling between Z. marina production and sediment bacterial carbon cycling. In contrast to the sulfate reduction rates, the pools of reduced sulfur were increased with up to 89% in the shaded, low-organic sediments, suggesting that the reoxidation of sulfides was reduced. Shading had no effect on the pools of sulfides in the organic-rich sediments due to much larger pools of sulfides. The enhanced sensitivity of spring plants to shading was probably due to a low above- to below-ground ratio compared to the autumn plants, which limited the plant-mediated oxidation of the sediments and thus the reoxidation of sulfides. The shaded plants were possibly more exposed to anoxic and sulfidic conditions affecting their growth and survival.


Biogeochemistry | 1998

Interferences between root plaque formation and phosphorus availability for isoetids in sediments of oligotrophic lakes

Kasper Kjellberg Christensen; Henning Skovgaard Jensen; Frede Østergaard Andersen; Marianne Holmer; Cathleen Wigand

Freshwater isoetids exchanges a high proportion of the photosynthetically produced oxygen over the extensive root system and, therefore, they influence the redox potential (Eh) and phosphorus (P) availability in their sediments. Because isoetids rely on the sediment for P uptake, P may be a key element in controlling the distribution of isoetids. We investigated biomass and P availability to isoetids (Littorella uniflora and Isoetes lacustris) in a transect of five stations across the littoral zone in oligotrophic Lake Kalgaard, Denmark. At the two shallowest stations (0.6 and 1.0 m depth) the redox potential in the low organic rhizosphere sediment was high (>300 mV) and low concentrations of reduced exchangeable iron (Fe) and manganese (Mn) compounds in the sediment and of precipitated Fe and Mn oxides on isoetid roots (plaques) were found. The concentration of sediment P pools was low and so was isoetid P content and isoetid biomass. At intermediate water depth (1.8 m) sediment Eh was high (∼300 mV) and isoetids showed low root plaque concentrations. However, higher concentration of P pools in the rhizosphere was found at 1.8 m and isoetids showed the highest P content and biomass. At deeper stations (2.8 and 4.6 m depth) Eh was low (<100 mV) in the high organic rhizosphere and high concentrations of plaques were found. The P content in the sediment was high, however, isoetids showed low biomass and low P content. We suggest that the low P content in isoetids growing on P rich organic sediments is partly due to inhibition of the P uptake because of adsorption of P to the oxidized Fe and Mn plaques. However, ratios between oxidized Fe and Fe-bound P, 150 for plaques and 40 for sediment, suggest the isoetids are able to access some of the P that is bound in the plaques. The pools of dissolved P in the porewater were 25–1100 times lower than the estimated annual P requirement for net growth of isoetids while solid fraction P pools were 20–260 times higher than the estimated annual P requirement. Clearly, the oxygen release from isoetid roots decreases the availability of P either by keeping the entire rhizosphere oxidized (low organic sediments) or by the formation of root plaques (high organic sediments).


Aquatic Botany | 1998

Sulfate reduction in lake sediments inhabited by the isoetid macrophytes Littorella uniflora and Isoetes lacustris

Marianne Holmer; Henning Skovgaard Jensen; Kasper Kjellberg Christensen; Cathleen Wigand; Frede Østergård Andersen

Abstract Sulfur cycling was examined in sediments inhabited with the isoetids Littorella uniflora and Isoetes lacustris in the oligotrophic soft-water Lake Kalgaard, Denmark. Based on short-term tracer incubations sulfate reduction was measured along a transect from the shore (0.6 m) to profundal sediments (4.6 m). The sulfate reduction rates were low (0.008–0.8 mmol m−2 d−1) in the sandy shallow sediments with low organic content ( 100 mV), whereas sulfate reduction was higher at the deeper sites (2.7–4.6 mmol m−2 d−1) with high organic content (max. 11.5 mmol C g−1 sed DW) and lower redox potentials ( 80%) of reduced sulfides being accumulated as elemental sulfur or pyrite (chromium reducible sulfur, CRS). The largest pools of CRS were found in high organic sediment with vertical distributions resembling those of the sulfate reduction rates. The overall effect of isoetid growth on sulfur cycling in the rhizosphere is a suppression of sulfate reduction in low organic sediments and the governing of sulfide reoxidation in sediments with higher organic content.


Aquatic Botany | 2001

Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events

Marianne Holmer; Elsebet Juhl Bondgaard


Marine Ecology Progress Series | 1997

Sediment sulfur dynamics related to biomass- density patterns in Zostera marina (eelgrass) beds

Marianne Holmer; Søren Laurentius Nielsen

Collaboration


Dive into the Marianne Holmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Núria Marbà

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Díaz-Almela

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge