Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Kearney is active.

Publication


Featured researches published by Marianne Kearney.


Nature Medicine | 1999

Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization

Tomono Takahashi; Christoph Kalka; Haruchika Masuda; Donghui Chen; Marcy Silver; Marianne Kearney; Meredith Magner; Jeffrey M. Isner; Takayuki Asahara

Endothelial progenitor cells (EPCs) have been isolated from circulating mononuclear cells in human peripheral blood and shown to be incorporated into foci of neovascularization, consistent with postnatal vasculogenesis. We determined whether endogenous stimuli (tissue ischemia) and exogenous cytokine therapy (granulocyte macrophage-colony stimulating factor, GM-CSF) mobilize EPCs and thereby contribute to neovascularization of ischemic tissues. The development of regional ischemia in both mice and rabbits increased the frequency of circulating EPCs. In mice, the effect of ischemia-induced EPC mobilization was demonstrated by enhanced ocular neovascularization after cornea micropocket surgery in mice with hindlimb ischemia compared with that in non-ischemic control mice. In rabbits with hindlimb ischemia, circulating EPCs were further augmented after pretreatment with GM-CSF, with a corresponding improvement in hindlimb neovascularization. There was direct evidence that EPCs that contributed to enhanced corneal neovascularization were specifically mobilized from the bone marrow in response to ischemia and GM-CSF in mice transplanted with bone marrow from transgenic donors expressing β-galactosidase transcriptionally regulated by the endothelial cell-specific Tie-2 promoter. These findings indicate that circulating EPCs are mobilized endogenously in response to tissue ischemia or exogenously by cytokine therapy and thereby augment neovascularization of ischemic tissues.


Circulation | 2001

Therapeutic Potential of Ex Vivo Expanded Endothelial Progenitor Cells for Myocardial Ischemia

Atsuhiko Kawamoto; Heon-Cheol Gwon; Hideki Iwaguro; Junichi Yamaguchi; Shigeki Uchida; Haruchika Masuda; Marcy Silver; Hong Ma; Marianne Kearney; Jeffrey M. Isner; Takayuki Asahara

Background —We investigated the therapeutic potential of ex vivo expanded endothelial progenitor cells (EPCs) for myocardial neovascularization. Methods and Results —Peripheral blood mononuclear cells obtained from healthy human adults were cultured in EPC medium and harvested 7 days later. Myocardial ischemia was induced by ligating the left anterior descending coronary artery in male Hsd:RH-rnu (athymic nude) rats. A total of 106 EPCs labeled with 1,1′-dioctadecyl-1 to 3,3,3′,3′-tetramethylindocarbocyanine perchlorate were injected intravenously 3 hours after the induction of myocardial ischemia. Seven days later, fluorescence-conjugated Bandeiraea simplicifolia lectin I was administered intravenously, and the rats were immediately killed. Fluorescence microscopy revealed that transplanted EPCs accumulated in the ischemic area and incorporated into foci of myocardial neovascularization. To determine the impact on left ventricular function, 5 rats (EPC group) were injected intravenously with 106 EPCs 3 hours after ischemia; 5 other rats (control group) received culture media. Echocardiography, performed just before and 28 days after ischemia, disclosed ventricular dimensions that were significantly smaller and fractional shortening that was significantly greater in the EPC group than in the control group by day 28. Regional wall motion was better preserved in the EPC group. After euthanization on day 28, necropsy examination disclosed that capillary density was significantly greater in the EPC group than in the control group. Moreover, the extent of left ventricular scarring was significantly less in rats receiving EPCs than in controls. Immunohistochemistry revealed capillaries that were positive for human-specific endothelial cells. Conclusions —Ex vivo expanded EPCs incorporate into foci of myocardial neovascularization and have a favorable impact on the preservation of left ventricular function.


Journal of Clinical Investigation | 1998

Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

Toyoaki Murohara; Takayuki Asahara; Marcy Silver; C Bauters; H Masuda; C Kalka; Marianne Kearney; Dongfen Chen; J F Symes; Mark C. Fishman; Paul L. Huang; Jeffrey M. Isner

We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.


Circulation | 2003

Intramyocardial Transplantation of Autologous Endothelial Progenitor Cells for Therapeutic Neovascularization of Myocardial Ischemia

Atsuhiko Kawamoto; Tengis Tkebuchava; Junichi Yamaguchi; Hiromi Nishimura; Young-sup Yoon; Charles E. Milliken; Shigeki Uchida; Osamu Masuo; Hideki Iwaguro; Hong Ma; Allison Hanley; Marcy Silver; Marianne Kearney; Douglas W. Losordo; Jeffrey M. Isner; Takayuki Asahara

Background—We investigated whether catheter-based, intramyocardial transplantation of autologous endothelial progenitor cells can enhance neovascularization in myocardial ischemia. Methods and Results—Myocardial ischemia was induced by placement of an ameroid constrictor around swine left circumflex artery. Four weeks after constrictor placement, CD31+ mononuclear cells (MNCs) were freshly isolated from the peripheral blood of each animal. After overnight incubation of CD31+ MNCs in noncoated plates, nonadhesive cells (NA/CD31+ MNCs) were harvested as the endothelial progenitor cell–enriched fraction. Nonadhesive CD31− cells (NA/CD31− MNCs) were also prepared. Autologous transplantation of 107 NA/CD31+ MNCs, 107 NA/CD31− MNCs, or PBS was performed with a NOGA mapping injection catheter to target ischemic myocardium. In a parallel study, 105 human CD34+ MNCs, 105 human CD34− MNCs, or PBS was transplanted into ischemic myocardium of nude rats 10 minutes after ligation of the left anterior descending coronary artery. In the swine study, ischemic area by NOGA mapping, Rentrop grade angiographic collateral development, and echocardiographic left ventricular ejection fraction improved significantly 4 weeks after transplantation of NA/CD31+ MNCs but not after injection of NA/CD31− MNCs or PBS. Capillary density in ischemic myocardium 4 weeks after transplantation was significantly greater in the NA/CD31+ MNC group than the control groups. In the rat study, echocardiographic left ventricular systolic function and capillary density were significantly better preserved in the CD34+ MNC group than in the control groups 4 weeks after myocardial ischemia. Conclusions—These favorable outcomes encourage future clinical trials of catheter-based, intramyocardial transplantation of autologous CD34+ MNCs in the setting of chronic myocardial ischemia.


Circulation | 1995

Apoptosis in Human Atherosclerosis and Restenosis

Jeffrey M. Isner; Marianne Kearney; Scott M. Bortman; Jonathan Passeri

BACKGROUND Apoptosis has been recognized in normal, including rapidly proliferating, cell populations and is inferred to be potentially responsible for the maintenance of stable cell numbers in tissues with various degrees of proliferative activity. Previous studies performed in rats indicated that despite the persistence of a relatively high level of injury-induced proliferative activity, total arterial smooth muscle content at 12 weeks remained unchanged from that measured at 2 weeks, suggesting that accrual of vascular smooth muscle cells is mitigated by cell death. The extent to which apoptosis may be observed in human atherosclerosis and/or restenosis, however, has not been previously established. METHODS AND RESULTS We performed immunohistochemical studies on 56 specimens retrieved from patients undergoing directional atherectomy for primary atherosclerotic lesions or recurrent arterial narrowing after percutaneous revascularization (restenosis). Immunohistochemical staining disclosed evidence of apoptosis in 35 (63%) of the 56 specimens studied. When present, immunohistochemical evidence of apoptosis was typically limited to < 2% of cells in the specimen. The finding of apoptosis, however, was not distributed equally among four groups of specimens studied. Specimens retrieved from patients with restenosis were more frequently observed to contain foci of apoptosis than specimens retrieved from patients with primary atherosclerotic lesions. Among 14 peripheral arterial specimens from patients with restenosis, 13 (93%) contained foci of apoptosis; in contrast, apoptosis was observed in only 6 (43%) of 14 peripheral specimens from patients with primary lesions (P = .0046). Among coronary arterial specimens, apoptosis was observed in 12 (86%) of 14 specimens from patients with restenosis versus 6 (29%) of 14 specimens from patients with primary obstructions (P < .0075). CONCLUSIONS Apoptosis is a feature of human vascular pathology, including restenotic lesions and, to a lesser extent, primary atherosclerotic lesions. The findings of the present study suggest that apoptosis may modulate the cellularity of lesions that produce human vascular obstruction, particularly those with evidence of more extensive proliferative activity.


Circulation | 1999

Age-Dependent Impairment of Angiogenesis

Alain Rivard; Jean-Etienne Fabre; Marcy Silver; Dongfen Chen; Toyoaki Murohara; Marianne Kearney; Meredith Magner; Takayuki Asahara; Jeffrey M. Isner

BACKGROUND The effect of aging on angiogenesis in ischemic vascular disease has not been studied. Accordingly, we investigated the hypothesis that angiogenesis is impaired as a function of age. METHODS AND RESULTS Forty days after the resection of 1 femoral artery, collateral vessel development was significantly impaired in old (aged 4 to 5 years; n=7) versus young (aged 6 to 8 months; n=6) New Zealand White (NZW) rabbits on the basis of reduced hindlimb perfusion (ischemic: normal blood pressure ratio=0.58+/-0.05 versus 0.77+/-0.06; P<0.005), reduced number of angiographically visible vessels (angiographic score=0.48+/-0.05 versus 0.70+/-0.05; P<0.01), and lower capillary density in the ischemic limb (130.3+/-5.8/mm2 versus 171.4+/-9.5/mm2; P<0.001). Angiogenesis was also impaired in old (aged 2 years) versus young (aged 12 weeks) mice as shown by reduced hindlimb perfusion (measured by laser Doppler imaging) and lower capillary density (353.0+/-14.3/mm2 versus 713.3+/-63.4/mm2; P<0.01). Impaired angiogenesis in old animals was the result of impaired endothelial function (lower basal NO release and decreased vasodilation in response to acetylcholine) and a lower expression of vascular endothelial growth factor (VEGF) in ischemic tissues (by Northern blot, Western blot, and immunohistochemistry). When recombinant VEGF protein was administered to young and old rabbits, both groups exhibited a significant and similar increase in blood pressure ratio, angiographic score, and capillary density. CONCLUSIONS Angiogenesis responsible for collateral development in limb ischemia is impaired with aging; responsible mechanisms include age-related endothelial dysfunction and reduced VEGF expression. Advanced age, however, does not preclude augmentation of collateral vessel development in response to exogenous angiogenic cytokines.


Circulation Research | 1998

Tie2 Receptor Ligands, Angiopoietin-1 and Angiopoietin-2, Modulate VEGF-Induced Postnatal Neovascularization

Takayuki Asahara; Donghui Chen; Tomono Takahashi; Koshi Fujikawa; Marianne Kearney; Meredith Magner; George D. Yancopoulos; Jeffrey M. Isner

Angiopoietin-1 (Ang1) has been recently identified as the major physiological ligand for the tyrosine kinase receptor Tie2 and assigned responsibility for recruiting and sustaining periendothelial support cells. Angiopoietin-2 (Ang2) was found to disrupt blood vessel formation in the developing embryo by antagonizing the effects of Ang1 and Tie2 and was thus considered to represent a natural Ang1/Tie2 inhibitor. In vivo effects of either angiopoietin on postnatal neovascularization, however, have not been previously described. Accordingly, we used the cornea micropocket assay of neovascularization to investigate the impact of angiopoietins on neovascularization in vivo. Neither Ang1 nor Ang2 alone promoted neovascularization. Pellets containing vascular endothelial growth factor (VEGF) alone induced corneal neovascularity extending from the limbus across the cornea. Addition of Ang 1 to VEGF (Ang1+VEGF) produced an increase in macroscopically evident perfusion of the corneal neovasculature without affecting macroscopic measurements of length (0.58+/-0.03 mm) or circumferential neovascularity (136+/-10 degrees). In contrast, pellets containing Ang2+VEGF promoted significantly longer (0.67+/-0.05 mm) and more circumferential (160+/-15degrees) neovascularity than VEGF alone or Ang1+VEGF (P<0.05). Excess soluble Tie2 receptor (sTie2-Fc) precluded modulation of VEGF-induced neovascularization by both Ang2 and Ang1. Fluorescent microscopic findings demonstrated enhanced capillary density (fluorescence intensity, 2.55+/-0.23 e+9 versus 1.23+/-0.17 e+9, P<0.01) and increased luminal diameter of the basal limbus artery (39.0+/-2.8 versus 27.9+/-1.3 microm, P<0.01) for Ang1+VEGF compared with VEGF alone. In contrast to Ang1+VEGF, Ang2+VEGF produced longer vessels and, at the tip of the developing capillaries, frequent isolated sprouting cells. In the case of Ang2+VEGF, however, luminal diameter of the basal limbus artery was not increased (26.7+/-1.9 versus 27.9+/-1.3, P=NS). These findings constitute what is to our knowledge the first direct demonstration of postnatal bioactivity associated with either angiopoietin. In particular, these results indicate that angiopoietins may potentiate the effects of other angiogenic cytokines. Moreover, these findings provide in vivo evidence that Ang1 promotes vascular network maturation, whereas Ang2 works to initiate neovascularization.


Circulation | 1995

Local Delivery of Vascular Endothelial Growth Factor Accelerates Reendothelialization and Attenuates Intimal Hyperplasia in Balloon-Injured Rat Carotid Artery

Takayuki Asahara; Christophe Bauters; Christopher Pastore; Marianne Kearney; Susan Rossow; Stuart Bunting; Napoleone Ferrara; James F. Symes; Jeffrey M. Isner

BACKGROUND Most strategies designed to reduce restenosis by the use of pharmacological or biological reagents involve direct inhibition of vascular smooth muscle cell (SMC) proliferation. Alternatively, SMC proliferation might be indirectly inhibited if reendothelialization could be specifically facilitated at sites of balloon-induced arterial injury. Accordingly, we investigated the hypothesis that application of an endothelial cell (EC)-specific mitogen to a freshly denuded intimal surface could accelerate reendothelialization and thereby attenuate intimal hyperplasia. METHODS AND RESULTS The left carotid artery of 31 Sprague-Dawley rats was subjected to balloon injury, after which 16 rats were treated with a 30-minute incubation with 100 micrograms of vascular endothelial growth factor (VEGF), an EC-specific mitogen. Control animals (n = 15) received a 30-minute incubation with 0.9% saline. At 2 weeks after balloon injury, carotid artery reendothelialization was markedly superior in the VEGF-treated group compared with the control group (14.59 +/- 1.12 versus 7.96 +/- 0.51 mm2, P < 0.005). The extent of reendothelialization measured at 4 weeks after balloon injury remained superior for arteries treated with VEGF (18.04 +/- 0.90 mm2) versus saline (13.42 +/- 0.84 mm2, P < .005). Neointimal thickening was correspondingly attenuated to a statistically significant degree in arteries treated with VEGF versus the control group at both the 2-week and 4-week time points. Immunostaining for proliferating cell nuclear antigen (PCNA) disclosed a threefold increase in PCNA-positive cells in the neointima of control arteries versus VEGF-treated arteries at 2 weeks after injury. CONCLUSIONS Application of VEGF, an EC-specific growth regulatory molecule, may be effectively used in vivo to promote reendothelialization and thereby indirectly attenuate neointimal thickening due to SMC proliferation.


Nature Medicine | 2001

The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors.

Roberto Pola; Leona E. Ling; Marcy Silver; Michael J. Corbley; Marianne Kearney; R. Blake Pepinsky; Renee Shapiro; Frederick R. Taylor; Darren P. Baker; Takayuki Asahara; Jeffrey M. Isner

Sonic hedgehog (Shh) is a prototypical morphogen known to regulate epithelial/mesenchymal interactions during embryonic development. We found that the hedgehog-signaling pathway is present in adult cardiovascular tissues and can be activated in vivo. Shh was able to induce robust angiogenesis, characterized by distinct large-diameter vessels. Shh also augmented blood-flow recovery and limb salvage following operatively induced hind-limb ischemia in aged mice. In vitro, Shh had no effect on endothelial-cell migration or proliferation; instead, it induced expression of two families of angiogenic cytokines, including all three vascular endothelial growth factor-1 isoforms and angiopoietins-1 and -2 from interstitial mesenchymal cells. These findings reveal a novel role for Shh as an indirect angiogenic factor regulating expression of multiple angiogenic cytokines and indicate that Shh might have potential therapeutic use for ischemic disorders.


Circulation | 2007

Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina : A phase I/IIa double-blind, randomized controlled trial

Douglas W. Losordo; Richard A. Schatz; Christopher J. White; James E. Udelson; Vimal Veereshwarayya; Michelle Durgin; Kian Keong Poh; Robert Weinstein; Marianne Kearney; Muqtada Chaudhry; Aaron Burg; Liz Eaton; Lindsay Heyd; Tina Thorne; Leon Shturman; Peter Hoffmeister; Ken Story; Victor Zak; Douglas Dowling; Jay H. Traverse; Rachel E. Olson; Janice Flanagan; Donata Sodano; Toshinori Murayama; Atsuhiko Kawamoto; Kengo Kusano; Jill Wollins; Frederick G.P. Welt; Pinak B. Shah; Peter Soukas

Background— A growing population of patients with coronary artery disease experiences angina that is not amenable to revascularization and is refractory to medical therapy. Preclinical studies have indicated that human CD34+ stem cells induce neovascularization in ischemic myocardium, which enhances perfusion and function. Methods and Results— Twenty-four patients (19 men and 5 women aged 48 to 84 years) with Canadian Cardiovascular Society class 3 or 4 angina who were undergoing optimal medical treatment and who were not candidates for mechanical revascularization were enrolled in a double-blind, randomized (3:1), placebo-controlled dose-escalating study. Patients received granulocyte colony-stimulating factor 5 &mgr;g · kg−1 · d−1 for 5 days with leukapheresis on the fifth day. Selection of CD34+ cells was performed with a Food and Drug Administration–approved device. Electromechanical mapping was performed to identify ischemic but viable regions of myocardium for injection of cells (versus saline). The total dose of cells was distributed in 10 intramyocardial, transendocardial injections. Patients were required to have an implantable cardioverter-defibrillator or to temporarily wear a LifeVest wearable defibrillator. No incidence was observed of myocardial infarction induced by mobilization or intramyocardial injection. The intramyocardial injection of cells or saline did not result in cardiac enzyme elevation, perforation, or pericardial effusion. No incidence of ventricular tachycardia or ventricular fibrillation occurred during the administration of granulocyte colony-stimulating factor or intramyocardial injections. One patient with a history of sudden cardiac death/ventricular tachycardia/ventricular fibrillation had catheter-induced ventricular tachycardia during mapping that required cardioversion. Serious adverse events were evenly distributed. Efficacy parameters including angina frequency, nitroglycerine usage, exercise time, and Canadian Cardiovascular Society class showed trends that favored CD34+ cell–treated patients versus control subjects given placebo. Conclusions— A randomized trial of intramyocardial injection of autologous CD34+ cells in patients with intractable angina was completed that provides evidence for feasibility, safety, and bioactivity. A larger phase IIb study is currently under way to further evaluate this therapy.

Collaboration


Dive into the Marianne Kearney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge