Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne P. Wilkerson is active.

Publication


Featured researches published by Marianne P. Wilkerson.


Journal of the American Chemical Society | 2009

Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory.

Stosh A. Kozimor; Ping Yang; Enrique R. Batista; Kevin S. Boland; Carol J. Burns; David L. Clark; Steven D. Conradson; Richard L. Martin; Marianne P. Wilkerson; Laura E. Wolfsberg

We describe the use of Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT) to probe the electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C(5)Me(5))(2)MCl(2) (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. Pre-edge features in the Cl K-edge XAS data for the group IV transition-metals 1-3 provide direct evidence of covalent M-Cl orbital mixing. The amount of Cl 3p character was experimentally determined to be 25%, 23%, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a pre-edge shoulder for 4 (Th) and distinct and weak pre-edge features for U, 5. The amount of Cl 3p character was determined to be 9% for 5, and we were unable to make an experimental determination for 4. Using hybrid DFT calculations with relativistic effective core potentials, the electronic structures of 1-5 were calculated and used as a guide to interpret the experimental Cl K-edge XAS data. For transition-metal compounds 1-3, the pre-edge features arise due to transitions from Cl 1s electrons into the 3d-, 4d-, and 5d-orbitals, with assignments provided in the text. For Th, 4, we find that 5f- and 6d-orbitals are nearly degenerate and give rise to a single pre-edge shoulder in the XAS. For U, 5, we find the 5f- and 6d-orbitals fall into two distinct energy groupings, and Cl K-edge XAS data are interpreted in terms of Cl 1s transitions into both 5f- and 6d-orbitals. Time-dependent DFT was used to calculate the energies and intensities of Cl 1s transitions into empty metal-based orbitals containing Cl 3p character and provide simulated Cl K-edge XAS spectra for 1-4. For 5, which has two unpaired 5f electrons, simulated spectra were obtained from transition dipole calculations using ground-state Kohn-Sham orbitals. To the best of our knowledge, this represents the first application of Cl K-edge XAS to actinide systems. Overall, this study allows trends in orbital mixing within a well-characterized structural motif to be identified and compared between transition-metals and actinide elements. These results show that the orbital mixing for the d-block compounds slightly decreases in covalency with increasing principal quantum number, in the order Ti > Zr approximately = Hf, and that uranium displays approximately half the covalent orbital mixing of transition elements.


Journal of the American Chemical Society | 2012

Determining Relative f and d Orbital Contributions to M–Cl Covalency in MCl62– (M = Ti, Zr, Hf, U) and UOCl5– Using Cl K-Edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory

Stefan G. Minasian; Jason M. Keith; Enrique R. Batista; Kevin S. Boland; David L. Clark; Steven D. Conradson; Stosh A. Kozimor; Richard L. Martin; Daniel E. Schwarz; David K. Shuh; Gregory L. Wagner; Marianne P. Wilkerson; Laura E. Wolfsberg; Ping Yang

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.


Journal of the American Chemical Society | 2015

Covalency in Lanthanides. An X-ray Absorption Spectroscopy and Density Functional Theory Study of LnCl6x– (x = 3, 2)

Matthias W. Löble; Jason M. Keith; Alison B. Altman; S. Chantal E. Stieber; Enrique R. Batista; Kevin S. Boland; Steven D. Conradson; David L. Clark; Juan S. Lezama Pacheco; Stosh A. Kozimor; Richard L. Martin; Stefan G. Minasian; Angela C. Olson; Brian L. Scott; David K. Shuh; Tolek Tyliszczak; Marianne P. Wilkerson; Ralph A. Zehnder

Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).


Journal of the American Chemical Society | 2013

Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

Liam P. Spencer; Ping Yang; Stefan G. Minasian; Robert E. Jilek; Enrique R. Batista; Kevin S. Boland; James M. Boncella; Steven D. Conradson; David L. Clark; Trevor W. Hayton; Stosh A. Kozimor; Richard L. Martin; Molly M. MacInnes; Angela C. Olson; Brian L. Scott; David K. Shuh; Marianne P. Wilkerson

Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.


Inorganic Chemistry | 2008

Covalency Trends in Group IV Metallocene Dichlorides. Chlorine K-Edge X-Ray Absorption Spectroscopy And Time Dependent-Density Functional Theory

Stosh A. Kozimor; Ping Yang; Enrique R. Batista; Kevin S. Boland; Carol J. Burns; Christin N. Christensen; David L. Clark; Steven D. Conradson; P. Jeffrey Hay; Juan S. Lezama; Richard L. Martin; Daniel Schwarz; Marianne P. Wilkerson; Laura E. Wolfsberg

For 3-5d transition-metal ions, the (C5R5)2MCl2 (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C5H5)2MCl2 (M = Ti, Zr, Hf; 1- 3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.


Journal of the American Chemical Society | 2010

Experimental and Theoretical Comparison of the O K-Edge Nonresonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4

Joseph A. Bradley; Ping Yang; Enrique R. Batista; Kevin S. Boland; Carol J. Burns; David L. Clark; Steven D. Conradson; Stosh A. Kozimor; Richard L. Martin; Gerald T. Seidler; Brian L. Scott; David K. Shuh; Tolek Tyliszczak; Marianne P. Wilkerson; Laura E. Wolfsberg

Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.


Journal of Molecular Structure | 1995

Control of selected physical properties of MX solids: an experimental and theoretical investigation

Brian L. Scott; Steven P. Love; G.S. Kanner; S.R. Johnson; Marianne P. Wilkerson; Michele Berkey; Avadh Saxena; X.Z Huang; A. R. Bishop

Received 17 January 1995; accepted in final form 2 May 1995 Abstract A series of eight materials of stoichiometry [Pt(L-L)2X2][Pt(L-L)2]Y 4 (X is Cl, Br; L-L is 1,2-diaminoethane (en) or 1,2- diaminocyclohexane (chxn); Y is CIO4, X-) were synthesized. Crystal structures were determined for the compounds [Pt(chxn)zC12][Pt(chxn)2](C104) 4 1, [Pt(chxn)2Brz][Pt(chxn)2](CIO4)4 2, and [Pt(chxn)zBrz][Pt(chxn)z]Br 4 4. All three of these compounds crystallize in the orthorhombic space group I222. Compound 1 has a = 5.711(1) ,~, b = 7.804(1) A, c = 24.101(7) A,, Z = 1, dx = 2.033 g cm 3. Compound 2 has a = 5.781(1) A, b = 7.720(1) ,~, c = 24.036(5) ,~, Z = 1, d× = 2.174 g cm -3. Compound 4 has a = 5.379(1) ,~, b = 7.028(1) A, c = 23.884(4) ,~, Z = 1, dx = 2.440 g cm 3. These solids contain pseudo one-dimensional chains with a charge-density-wave (CDW) ground state structure: X-Pt(IV)- X...Pt(II)...X. Single crystal resonance Raman experiments were performed on all compounds to measure the sym- metric X Pt X stretching frequency u~ and the band edge. It is shown that the optical and electronic properties and, therefore, the CDW strength of these one-dimensional materials may be systematically varied over a wide range by employing different combinations of L-L and Y; templates composed of hydrogen bonded networks of L-L and Y were found to control the metal-metal separation, thereby controlling the X-Pt(IV)-X...Pt(II)...X chain geometry. Rela- tionships between the CDW strength, measured as the ratio of the short M(IV) X distance to the long M(II) X distance, the band gap energy ul and the Pt-Pt separation are developed. The reaction coordinate is found to be dominated by changes in the M-M and Pt(II)-X separations over most of the range studied, with contributions from changes in the ptlV-x bonds becoming important only at the smallest M-M separations. Direct evidence demonstrating that MX systems are true Peierls distorted systems is also presented. These results are consistent with modeling based on Peierls- Hubbard hamiltonians. This work explains the unusual pressure and temperature dependences that have been observed for the structures and optical properties of this class of materials and also provides a wealth of information to benchmark many-body theoretical calculations modeling electron electron and electron-phonon interactions in one-dimensional materials. 1. Introduction There has been recent interest in halogen bridged * Corresponding authors.


Environmental Science & Technology | 2015

Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats.

Olga N. Batuk; Steven D. Conradson; Olga N. Aleksandrova; Hakim Boukhalfa; Boris E. Burakov; David L. Clark; Kenneth R. Czerwinski; Andrew R. Felmy; Juan S. Lezama-Pacheco; Stepan N. Kalmykov; Dean A. Moore; B. F. Myasoedov; Donald T. Reed; Dallas Reilly; Robert C. Roback; I. E. Vlasova; Samuel M. Webb; Marianne P. Wilkerson

The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.


Analytical Chemistry | 2015

Oxidation and Hydration of U3O8 Materials Following Controlled Exposure to Temperature and Humidity

Alison L. Tamasi; Kevin S. Boland; Kenneth R. Czerwinski; Jason K. Ellis; Stosh A. Kozimor; Richard L. Martin; Alison L. Pugmire; Dallas Reilly; Brian L. Scott; Andrew D. Sutton; Gregory L. Wagner; Justin R. Walensky; Marianne P. Wilkerson

Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.


Journal of Physical Chemistry A | 2008

Near-Infrared Photoluminescence from a Plutonyl Ion

Marianne P. Wilkerson; John M. Berg

We report the first example of photoluminescence from electronically excited states of the plutonyl ion. Discrete emission transitions were measured between 6000 and 10,200 cm(-1) from crystalline Cs2U(Pu)O2Cl4 cooled to 75 K following pulsed laser excitation at 628 nm. An excitation spectrum in the region of 15,000-16,500 cm(-1) is compared with 4.2 K plane-polarized absorption spectra reported by Gorshkov and Mashirov. Analysis of excited-state lifetime data suggests multiple relaxation pathways in the electronic structure of PuO2Cl4(2-).

Collaboration


Dive into the Marianne P. Wilkerson's collaboration.

Top Co-Authors

Avatar

Brian L. Scott

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John M. Berg

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven D. Conradson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David L. Clark

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stosh A. Kozimor

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carol J. Burns

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregory L. Wagner

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin S. Boland

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Enrique R. Batista

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard L. Martin

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge