Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Ridderström is active.

Publication


Featured researches published by Marianne Ridderström.


The EMBO Journal | 1997

Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.

Alexander D. Cameron; Birgit Olin; Marianne Ridderström; Bengt Mannervik; T.A. Jones

The zinc metalloenzyme glyoxalase I catalyses the glutathione‐dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S‐benzyl‐glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 Å resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the ‘glutathione binding domain’ found in other glutathione‐linked proteins. 3D domain swapping of the N‐ and C‐terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+‐dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping.


Structure | 1999

Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.

Alexander D. Cameron; Marianne Ridderström; Birgit Olin; Bengt Mannervik

BACKGROUND Glyoxalase II, the second of two enzymes in the glyoxalase system, is a thiolesterase that catalyses the hydrolysis of S-D-lactoylglutathione to form glutathione and D-lactic acid. RESULTS The structure of human glyoxalase II was solved initially by single isomorphous replacement with anomalous scattering and refined at a resolution of 1.9 A. The enzyme consists of two domains. The first domain folds into a four-layered beta sandwich, similar to that seen in the metallo-beta-lactamases. The second domain is predominantly alpha-helical. The active site contains a binuclear zinc-binding site and a substrate-binding site extending over the domain interface. The model contains acetate and cacodylate in the active site. A second complex was derived from crystals soaked in a solution containing the slow substrate, S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione. This complex was refined at a resolution of 1.45 A. It contains the added ligand in one molecule of the asymmetric unit and glutathione in the other. CONCLUSIONS The arrangement of ligands around the zinc ions includes a water molecule, presumably in the form of a hydroxide ion, coordinated to both metal ions. This hydroxide ion is situated 2.9 A from the carbonyl carbon of the substrate in such a position that it could act as the nucleophile during catalysis. The reaction mechanism may also have implications for the action of metallo-beta-lactamases.


Journal of Biological Chemistry | 1998

Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I.

Marianne Ridderström; Alexander D. Cameron; T.A. Jones; Bengt Mannervik

The Zn2+ ligands glutamate 99 and glutamate 172 in the active site of human glyoxalase I were replaced, each in turn, by glutamines by site-directed mutagenesis to elucidate their potential significance for the catalytic properties of the enzyme. To compensate for the loss of the charged amino acid residue, another of the metal ligands, glutamine 33, was simultaneously mutated into glutamate. The double mutants and the single mutants Q33E, E99Q, and E172Q were expressed in Escherichia coli, purified on an S-hexylglutathione matrix, and characterized. Metal analysis demonstrated that mutant Q33E/E172Q contained 1.0 mol of zinc/mol of enzyme subunit, whereas mutant Q33E/E99Q contained only 0.3 mol of zinc/mol of subunit. No catalytic activity could be detected with the double mutant Q33E/E172Q (<10−8 of the wild-type activity). The second double mutant Q33E/E99Q had 1.5% of the specific activity of the wild-type enzyme, whereas the values for mutants Q33E and E99Q were 1.3 and 0.1%, respectively; the E172Q mutant had less than 10−5times the specific activity of the wild-type. The crystal structure of the catalytically inactive double mutant Q33E/E172Q demonstrated that Zn2+ was bound without any gross changes or perturbations. The results suggest that the metal ligand glutamate 172 is directly involved in the catalytic mechanism of the enzyme, presumably serving as the base that abstracts a proton from the hemithioacetal substrate.


Journal of Chemical Information and Modeling | 2005

Virtual Screening and Scaffold Hopping Based on GRID Molecular Interaction Fields

Marie M. Ahlström; Marianne Ridderström; Kristina Luthman; Ismael Zamora

In this study, a set of strategies for structure-based design using GRID molecular interaction fields (MIFs) to derive a pharmacophoric representation of a protein is reported. Thrombin, one of the key enzymes involved in the blood coagulation cascade, was chosen as the model system since abundant published experimental data are available related to both crystal structures and structurally diverse sets of inhibitors. First, a virtual screening methodology was developed either using a pharmacophore representation of the protein based on GRID MIFs or using GRID MIFs from the 3D structure of a set of chosen thrombin inhibitors. The search was done in a 3D multiconformation version of the Available Chemical Directory (ACD) database, which had been spiked with 262 known thrombin inhibitors (multiple conformers available per compound). The model managed to find 80% of the known thrombin inhibitors among the 74,291 conformers in the ACD by only searching 5% of the database; hence, a 15-fold enrichment of the library was achieved. Second, a scaffold hopping methodology was developed using GRID MIFs, giving the scaffold interaction pattern and the shape of the scaffold, together with the distance between the anchor points. The scaffolds reported by Dolle in the Journal of Combinatorial Chemistry summaries (2000 and 2001) and scaffolds built or derived from ligands cocomplexed with the thrombin enzyme were parameterized using a new set of descriptors and saved into a searchable database. The scaffold representation from the database was then compared to a template scaffold (from a thrombin crystal structure), and the thrombin-derived scaffolds included in the database were found among the top solutions. To validate the usefulness of the methodology to replace the template scaffold, the entire molecule was built (scaffold and side chains) and the resulting compounds were docked into the active site of thrombin. The docking solutions showed the same binding pattern as the cocomplexed compound, hence, showing that this method can be a valuable tool for medicinal chemists to select interchangeable core structures (scaffolds) in an easy manner and retaining the binding properties from the original ligand.


Biochemical Pharmacology | 2002

The molecular and enzyme kinetic basis for the diminished activity of the cytochrome P450 2D6.17 (CYP2D6.17) variant. Potential implications for CYP2D6 phenotyping studies and the clinical use of CYP2D6 substrate drugs in some African populations.

Tashinga E. Bapiro; Julia A. Hasler; Marianne Ridderström; Collen Masimirembwa

In this study, the basis for the diminished capacity of CYP2D6.17 to metabolise CYP2D6 substrate drugs and the possible implications this might have for CYP2D6 phenotyping studies and clinical use of substrate drugs were investigated in vitro. Enzyme kinetic analyses were performed with recombinant CYP2D6.1, CYP2D6.2, CYP2D6.17 and CYP2D6.T107I using bufuralol, debrisoquine, metoprolol and dextromethorphan as substrates. In addition, the intrinsic clearance of 10 CYP2D6 substrate drugs by CYP2D6.1 and CYP2D6.17 was determined by monitoring substrate disappearance. CYP2D6.17 exhibited generally higher K(m) values compared to CYP2D6.1. The V(max) values were generally not different except for metoprolol alpha-hydroxylation with the V(max) value for CYP2D6.17 being half that of CYP2D6.1. CYP2D6.1 and CYP2D6.2 displayed similar kinetics with all probe drugs except for dextromethorphan O-demethylation with the intrinsic clearance value of CYP2D6.2 being half that of CYP2D6.1. CYP2D6.17 exhibited substrate-dependent reduced clearances for the 10 substrates studied. In a clinical setting, the clearance of some drugs could be affected more than others in individuals with the CYP2D6(*)17 variant. The CYP2D6(*)17 allele might, therefore, contribute towards the poor correlation of phenotyping results when using different probe drugs in African populations. To investigate effects of CYP2D6(*)17 mutations on the structure of the enzyme, a homology model of CYP2D6 was built using the CYP2C5 crystal structure as a template. The results suggest an alteration in position of active-site residues in CYP2D6.17 as a possible explanation for the reduced activity of the enzyme.


Methods in Enzymology | 2002

Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates

Collen Masimirembwa; Marianne Ridderström; Ismael Zamora; Tommy B. Andersson

Publisher Summary This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the selectivity. Generation of a three dimension-quantitative structure–activity relationship (QSAR) model for a diverse set of CYP2C9 inhibitors taking into account important parameters, such as mechanism of inhibition and stereochemistry, is described in the chapter. Basic validation of the QSAR models involves cross validation using the “leave one out” (L.O.O.) technique or different percentages of elements of the original training set and trying to predict their biological effect by the model generated with the remaining compounds. This method evaluates the predictive power of the model inside the set defined to build it but it could give an overly optimistic view of the performance of the model.


Biochimica et Biophysica Acta | 2000

The active-site residue tyr-175 in human glyoxalase II contributes to binding of glutathione derivatives.

Marianne Ridderström; Per Jemth; Alexander D. Cameron; Bengt Mannervik

Tyrosine-175 located in the active site of human glyoxalase II was replaced by phenylalanine in order to study the contribution of this residue to catalysis. The mutation had a marginal effect on the k(cat) value determined using S-D-lactoylglutathione as substrate. However, the Y175F mutant had an 8-fold higher K(m) value than the wild-type enzyme. The competitive inhibitor S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione had a 30-fold higher K(i) value towards the mutant, than that of the wild-type. Pre-equilibrium fluorescence studies with the inhibitor showed that this was due to a significantly increased off-rate for the mutant enzyme. The phenolic hydroxyl group of tyrosine-175 is within hydrogen bonding distance of the amide nitrogen of the glycine in the glutathione moiety and the present study shows that this interaction makes a significant contribution to the binding of the active-site ligand.


Biochemical Journal | 1998

Human glutathione transferase A4-4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation

Ina Hubatsch; Marianne Ridderström; Bengt Mannervik


Journal of Pharmacology and Experimental Therapeutics | 2002

Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate.

Xue-Qing Li; Anders Björkman; Tommy B. Andersson; Marianne Ridderström; Collen Masimirembwa


Journal of Molecular Biology | 1999

Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products

Christopher M. Bruns; Ina Hubatsch; Marianne Ridderström; Bengt Mannervik; John A. Tainer

Collaboration


Dive into the Marianne Ridderström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge