Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Vestergaard is active.

Publication


Featured researches published by Marianne Vestergaard.


The Astrophysical Journal | 2004

Central masses and broad-line region sizes of active galactic nuclei. II. A Homogeneous analysis of a large reverberation-mapping database

Bradley M. Peterson; Laura Ferrarese; Karoline M. Gilbert; Shai Kaspi; M. Malkan; D. Maoz; David Merritt; Hagai Netzer; Christopher A. Onken; Richard W. Pogge; Marianne Vestergaard; Amri Wandel

We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product cτΔV2/G, where τ is the emission-line lag relative to continuum variations and ΔV is the emission-line width, is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to FWHM) for the line width and by measuring the line width in the variable part of the spectrum. Accurate line-width measurement depends critically on avoiding contaminating features, in particular the narrow components of the emission lines. We find that the precision (or random component of the error) of reverberation-based black hole mass measurements is typically around 30%, comparable to the precision attained in measurement of black hole masses in quiescent galaxies by gas or stellar dynamical methods. Based on results presented in a companion paper by Onken et al., we provide a zero-point calibration for the reverberation-based black hole mass scale by using the relationship between black hole mass and host-galaxy bulge velocity dispersion. The scatter around this relationship implies that the typical systematic uncertainties in reverberation-based black hole masses are smaller than a factor of 3. We present a preliminary version of a mass-luminosity relationship that is much better defined than any previous attempt. Scatter about the mass-luminosity relationship for these AGNs appears to be real and could be correlated with either Eddington ratio or object inclination.


The Astrophysical Journal | 2006

Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships

Marianne Vestergaard; Bradley M. Peterson

We present four improved empirical relationships useful for estimating the central black hole mass in nearby AGNs and distant luminous quasars alike using either optical or UV single-epoch spectroscopy. These mass scaling relationships between line widths and luminosity are based on recently improved empirical relationships between the broad-line region size and luminosities in various energy bands and are calibrated to the improved mass measurements of nearby AGNs based on emission-line reverberation mapping. The mass scaling relationship based on the Hβ line luminosity allows mass estimates for low-redshift sources with strong contamination of the optical continuum luminosity by stellar or nonthermal emission, while that based on the C IV λ1549 line dispersion allows mass estimates in cases where only the line dispersion (as opposed to the FWHM) can be reliably determined. We estimate that the absolute uncertainties in masses given by these mass scaling relationships are typically around a factor of 4. We include in an appendix mass estimates for all of the Bright Quasar Survey (PG) quasars for which direct reverberation-based mass measurements are not available.


The Astrophysical Journal | 2005

THE RELATIONSHIP BETWEEN LUMINOSITY AND BROAD-LINE REGION SIZE IN ACTIVE GALACTIC NUCLEI

Shai Kaspi; Dan Maoz; Hagai Netzer; Bradley M. Peterson; Marianne Vestergaard; Buell T. Jannuzi

We reinvestigate the relationship between the characteristic broad-line region size (RBLR) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of RBLR for a large number of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of RBLR for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data subsample and regression technique. Although small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation RBLR ∝ Lα, we find that the mean best-fitting α is about 0.67 ± 0.05 for the optical continuum and the broad Hβ luminosity, about 0.56 ± 0.05 for the UV continuum luminosity, and about 0.70 ± 0.14 for the X-ray luminosity. We also find an intrinsic scatter of ~40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average the same ionization parameter, BLR density, column density, and ionizing spectral energy distribution is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.


Astrophysical Journal Supplement Series | 2006

Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars

Gordon T. Richards; Mark Lacy; Lisa J. Storrie-Lombardi; Patrick B. Hall; S. C. Gallagher; Dean C. Hines; Xiaohui Fan; Casey Papovich; Daniel E. Vanden Berk; George B. Trammell; Donald P. Schneider; Marianne Vestergaard; Donald G. York; Sebastian Jester; Scott F. Anderson; Tamas Budavari; Alexander S. Szalay

We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.


The Astrophysical Journal | 2004

SUPERMASSIVE BLACK HOLES IN ACTIVE GALACTIC NUCLEI. II. CALIBRATION OF THE BLACK HOLE MASS - VELOCITY DISPERSION RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

Christopher A. Onken; Laura Ferrarese; David Merritt; Bradley M. Peterson; Richard W. Pogge; Marianne Vestergaard; Amri Wandel

We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current observational uncertainties preclude use of the scaling factor to discriminate between broad-line region models.We calibrate reverberation-based black hole (BH) masses in active galactic nuclei (AGNs) by using the correlation between BH mass, MBH, and bulge/spheroid stellar velocity dispersion, σ*. We use new measurements of σ* for six AGNs and published velocity dispersions for 10 others, in conjunction with improved reverberation-mapping results, to determine the scaling factor required to bring reverberation-based BH masses into agreement with the quiescent galaxy MBH-σ* relationship. The scatter in the AGN BH masses is found to be less than a factor of 3. The current observational uncertainties preclude the use of the scaling factor to discriminate between broad-line region models.


The Astrophysical Journal | 2009

The Radius-Luminosity Relationship For Active Galactic Nuclei: The Effect of Host-Galaxy Starlight On Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

Misty C. Bentz; Bradley M. Peterson; Hagai Netzer; Richard W. Pogge; Marianne Vestergaard

We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR-L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR-L relationship.


arXiv: Astrophysics | 2004

Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the M-sigma Relationship for AGNs

Christopher A. Onken; Laura Ferrarese; David Merritt; Bradley M. Peterson; Richard W. Pogge; Marianne Vestergaard; Amri Wandel

We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current observational uncertainties preclude use of the scaling factor to discriminate between broad-line region models.We calibrate reverberation-based black hole (BH) masses in active galactic nuclei (AGNs) by using the correlation between BH mass, MBH, and bulge/spheroid stellar velocity dispersion, σ*. We use new measurements of σ* for six AGNs and published velocity dispersions for 10 others, in conjunction with improved reverberation-mapping results, to determine the scaling factor required to bring reverberation-based BH masses into agreement with the quiescent galaxy MBH-σ* relationship. The scatter in the AGN BH masses is found to be less than a factor of 3. The current observational uncertainties preclude the use of the scaling factor to discriminate between broad-line region models.


The Astrophysical Journal | 2006

The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements

Misty C. Bentz; Bradley M. Peterson; Richard W. Pogge; Marianne Vestergaard; Christopher A. Onken

We have obtained high-resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGNs) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure the host-galaxy starlight contribution to the continuum luminosity at 5100 ? through the typical ground-based slit position and geometry used in the reverberation-mapping campaigns. We find that removing the starlight contribution results in a significant correction to the luminosity of each AGN both for lower luminosity sources, as expected, but also for the higher luminosity sources such as the PG quasars. After accounting for the host galaxy starlight, we revisit the well-known broad-line region radius-luminosity relationship for nearby AGNs. We find the power-law slope of the relationship for the H? line to be 0.518 ? 0.039, shallower than what was previously reported and consistent with the slope of 0.5 expected from the naive theoretical assumption that all AGNs have, on average, the same ionizing spectrum and the same ionization parameter and gas density in the H? line-emitting region.


The Astrophysical Journal | 2002

Determining Central Black Hole Masses in Distant Active Galaxies

Marianne Vestergaard

An empirical relationship, of particular interest for studies of high-redshift active galactic nuclei (AGNs) and quasars, between the masses of their central black holes and rest-frame ultraviolet (UV) parameters measured in single-epoch AGN spectra is presented. This relationship is calibrated to recently measured reverberation masses of low-redshift AGNs and quasars. An empirical relationship between single-epoch rest-frame optical spectrophotometric measurements and the central masses is also presented. The UV relationship allows reasonable estimates of the central masses to be made for high-redshift AGNs and quasars for which these masses cannot be directly or easily measured by the techniques applicable to the lower luminosity, nearby AGNs. The central mass obtained by this method can be estimated to within a factor of ~3 for most objects. This is reasonable given the intrinsic uncertainty of a factor of less than 2 in the primary methods used to measure the central masses of nearby inactive and active galaxies, namely, resolved gas and stellar kinematics in the underlying host galaxy and reverberation-mapping techniques. The UV relationship holds good potential for being a powerful tool for studying black hole demographics at high redshift as well as statistically studying the fundamental properties of AGNs. The broad-line region size-luminosity relationship is key to the calibrations presented here. The fact that its intrinsic scatter is also the main source of uncertainty in the calibrations stresses the need for better observational constraints to be placed on this relationship. The empirically calibrated relationships presented here will be applied to quasar samples in forthcoming work.


The Astronomical Journal | 2004

A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars

Xiaohui Fan; Michael A. Strauss; Gordon T. Richards; Joseph F. Hennawi; Robert H. Becker; Richard L. White; Aleksandar M. Diamond-Stanic; J. L. Donley; Linhua Jiang; J. Serena Kim; Marianne Vestergaard; Jason Young; James E. Gunn; Robert H. Lupton; Gillian R. Knapp; Donald P. Schneider; W. N. Brandt; Neta A. Bahcall; John C. Barentine; J. Brinkmann; Howard J. Brewington; Masataka Fukugita; Michael Harvanek; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Atsuko Nitta; Stephanie A. Snedden; W. Voges

The authors present the discovery of seven quasars at z > 5.7, selected from {approx} 2000 deg{sup 2} of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two have larger photometric errors and are not part of the complete sample. One of the new quasars, SDSS J1335+3533 (z = 5.93), exhibits no emission lines; the 3-{sigma} limit on the rest-frame equivalent width of Ly{alpha}+NV line is 5 {angstrom}. It is the highest redshift lineless quasar known, and could be a gravitational lensed galaxy, a BL Lac object or a new type of quasar. Two new z > 6 quasars, SDSS 1250+3130 (z = 6.13) and SDSS J1137+3549 (z = 6.01), show deep Gunn-Peterson troughs in Ly{alpha}. These troughs are narrower than those observed among quasars at z > 6.2 and do not have complete Ly{beta} absorption.

Collaboration


Dive into the Marianne Vestergaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Misty C. Bentz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Onken

Australian National University

View shared research outputs
Top Co-Authors

Avatar

W. N. Brandt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge