Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Volleth is active.

Publication


Featured researches published by Marianne Volleth.


Human Genetics | 2003

Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification

Heike Starke; Angela Nietzel; Anja Weise; Anita Heller; Kristin Mrasek; Britta Belitz; Christine Kelbova; Marianne Volleth; Beate Albrecht; Beate Mitulla; Ralf Trappe; Iris Bartels; Sabine Adolph; Andreas Dufke; Sylke Singer; Markus Stumm; Rolf-Dieter Wegner; Jörg Seidel; Angela Schmidt; Alma Kuechler; Isolde Schreyer; Uwe Claussen; Ferdinand von Eggeling; Thomas Liehr

Small supernumerary marker chromosomes (SMCs) are present in about 0.05% of the human population. In approximately 30% of SMC carriers (excluding the ~60% SMC derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. The clinical outcome of an SMC is difficult to predict as they can have different phenotypic consequences because of (1) differences in euchromatic DNA-content, (2) different degrees of mosaicism, and/or (3) uniparental disomy (UPD) of the chromosomes homologous to the SMC. Here, we present 35 SMCs, which are derived from all human chromosomes, apart from chromosomexa06, as demonstrated by the appropriate molecular cytogenetic approaches, such as centromere-specific multicolor fluoresence in situ hybridization (cenM-FISH), multicolor banding (MCB), and subcentromere-specific multicolor FISH (subcenM-FISH). In nine cases without an aberrant phenotype, neither partial proximal trisomies nor UPD could be detected. Abnormal clinical findings, such as psychomotoric retardation and/or craniofacial dysmorphisms, were associated with seven of the cases in which subcentromeric single-copy probes were proven to be present in three copies. Conversely, in eight cases with a normal phenotype, proximal euchromatic material was detected as partial trisomy. UPD was studied in 12 cases and subsequently detected in two of the cases with SMC (partial UPDxa04p and maternal UPDxa022 in a der(22)-syndrome patient), indicating that SMC carriers have an enhanced risk for UPD. At present, small proximal trisomies of 1p, 1q, 2p, 6p, 6q, 7q, 9p, and 12q seem to lead to clinical manifestations, whereas partial proximal trisomies of 2q, 3p, 3q, 5q, 7p, 8p, 17p, and 18p may not be associated with significant clinical symptoms. With respect to clinical outcome, a classification of SMCs is proposed that considers molecular genetic and molecular cytogenetic characteristics as demonstrated by presently available methods.


Naturwissenschaften | 2001

Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe.

O. von Helversen; Heller K.-G.; Frieder Mayer; A Nemeth; Marianne Volleth; P Gombkötö

Abstract. The analysis of morphological, behavioural and genetic characters of whiskered bats revealed a new European bat species within the family Vespertilionidae. We describe the morphology, karyology, genetic similarity, ecology and distribution of Myotis alcathoe n. sp. It closely resembles Myotis mystacinus, Myotis brandtii and Myotis ikonnikovi in morphology, but all four species show clear genetic differences in two mitochondrial genes (ND1 and 12S rRNA). Myotis alcathoe n. sp. is the smallest species among the European whiskered bats and uses the highest-frequency echolocation calls of all the European Myotis species. It prefers to hunt in small valleys with deciduous trees and flowing water, which is an endangered habitat. Records from Greece and Hungary indicate a distribution range in south-eastern Europe.


European Journal of Human Genetics | 2002

Homologous sequences at human chromosome 9 bands p12 and q13-21.1 are involved in different patterns of pericentric rearrangements

Heike Starke; Jörg Seidel; Wolfram Henn; Sylvia Reichardt; Marianne Volleth; Markus Stumm; Christine Behrend; Klaus R Sandig; Christine Kelbova; Gabriele Senger; Beate Albrecht; Ingo Hansmann; Anita Heller; Uwe Claussen; Thomas Liehr

A thorough study of the heterochromatin organisation in the pericentromeric region and the proximal long (q) and short (p) arms of human chromsome 9 (HSA 9) revealed homology between 9p12 and 9q13-21.1, two regions that are usually not distinguishable by molecular cytogenetic techniques. Furthermore, the chromosomal regions 9p12 and 9q13-21.1 showed some level of homology with the short arms of the human acrocentric chromosomes. We studied five normal controls and 51 clinical cases: 48 with chromosome 9 heteromorphisms, one with an exceptionally large inversion and two with an additional derivative chromosome 9. Using fluorescence in situ hybridisation (FISH) with three differentially labelled chromosome 9-specific probes we were able to distinguish 12 heteromorphic patterns in addition to the most frequent pattern (defined as normal). In addition, we studied one inversion 9 case with the recently described multicolour banding (MCB) technique. Our results, and previously published findings, suggest several hotspots for recombination in the pericentromeric heterochromatin of HSA 9. They also demonstrate that constitutional inversions affecting the pericentromeric region of chromosome 9 carry breakpoints located preferentially in 9p12 or 9q13-21.1 and less frequently in 9q12.


Cytogenetic and Genome Research | 1987

Differences in the location of nucleolus organizer regions in European vespertilionid bats

Marianne Volleth

The karyotypes of European vespertilionid bats are distinguished by only a few, easily detectable differences in their G-banding patterns. Most rearrangements can be identified as Robertsonian translocations. Yet, there are surprising differences in the location of active nucleolus organizer regions (NORs), as revealed by silver staining. The ancestral position of the NOR is considered to be a secondary constriction on chromosome 15, as is the case in the genera Eptesicus, Nyctalus, and Vespertilio and in three of four Pipistrellus species. The remaining genera show multiple NOR sites located on minute short arms close to the centromere. In P. pipistrellus, differences in the location of the NORs correlate with the geographical origin of the animals. Some Myotis species possess NORs on numerous chromosomes and show great interindividual variability. In addition, two sibling species, M. brandtii and M. mystacinus, show completely different NOR locations.


Chromosome Research | 2002

A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families.

Marianne Volleth; Klaus-Gerhard Heller; R.A. Pfeiffer; H. Hameister

Fluorescence in-situ hybridization with human whole chromosome painting probes (WCPs) was applied to compare the karyotypes of members of five bat families. Twenty-five evolutionarily conserved units (ECUs) were identified by ZOO-FISH analysis. In 10 of these 25 ECUs, thorough GTG-band comparison revealed an identical banding pattern in all families studied. Differences in the remaining ECUs were used as characters to judge the phylogenetic relationships within Chiroptera. Close relations hips were found between Rhinolophidae and Hipposideridae. Also closely related are the representatives of the yangochiropteran families Phyllostomidae (genus studied: Glossophaga, Volleth et al. 1999), Molossidae and Vespertilionidae. All microchiropteran species studied here share four common features not found in the megachiropteran species Eonycteris spelaea. Two of these are considered as derived characters with a high probability of parallel evolution. On the other hand, Eonycteris shares one common, probably derived feature with the rhinolophoid families Rhinolophidae and Hipposideridae and an additional one only with Hipposideridae. At the moment, the relationships between Yangochiroptera, Rhinolophoidea and Megachiroptera must be left in an unsolved trichotomy. Comparison of neighboring segment combinations found in Chiroptera with those found in other mammalian taxa revealed six synapomorphic features for Chiroptera. Therefore, for karyological reasons, monophyly of Chiroptera is strongly supported.


Chromosome Research | 2001

Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia)

Marianne Volleth; G. Bronner; M. C. Göpfert; Klaus-Gerhard Heller; O. von Helversen; H.-S. Yong

Detailed karyotype descriptions of 20 Pipistrellus-like bat species belonging to the family Vespertilionidae are presented. For the first time, chromosomal complements of four species, i.e. Pipistrellus stenopterus (2n=32), P. javanicus (2n=34), Hypsugo eisentrauti (2n=42) and H. crassulus (2n=30) are reported. A Pipistrellus kuhlii-like species from Madagascar represents a separate species distinguished from the European Pipistrellus kuhlii (2n=44) by a diploid chromosome number of 42. Banded karyotypes are presented for the first time for Scotozous dormeri, Hypsugo capensis, Hesperoptenus blanfordi, Tylonycteris pachypus and robustula. Chromosomal evolution in the family Vespertilionidae is characterized by the conservation of entire chromosomal arms and reductions in diploid chromosome number via Robertsonian fusions. Less frequently, centric fissions, para- and pericentric inversions and centromere shifts were found to have occurred. In several cases a certain type of chromosomal change predominates in a karyotype. Examples of this are the acquisition of interstitial heterochromatic bands in Tylonycteris robustula, and centric shifts in P. javanicus, H. eisentrauti and Hesp. Blanfordi. The species examined here belong to three tribes, i.e. Pipistrellini, Vespertilionini and Eptesicini, which are distinguished by chromosomal characteristics. According to our results, the species Pipistrellus (Neoromicia) capensis belongs to the Vespertilionini and not to the Pipistrellini. We therefore propose to elevate the subgenus Neoromicia to generic rank.


Chromosome Research | 1999

ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae).

Marianne Volleth; Christine Klett; Antje Kollak; Christa Dixkens; York Winter; Walter Just; Walther Vogel; Horst Hameister

Glossophaga soricina is a flower-visiting bat which lives in the neotropics. The diploid chromosome number is 2n = 32 with a fundamental number of autosomal arms, FN, of 60. G. soricina belongs to the Microchiroptera which have a lower diploid DNA content and a higher AT composition in their DNA compared with other mammals. By ZOO-FISH analysis with human chromosome-specific DNA probes, the human autosomes were found conserved in 41 segments. This is an arrangement similar to other mammals which have been analyzed. Several chromosomal associations already known from ZOO-FISH studies in other species were also present in G. soricina.


PLOS ONE | 2010

Early Embryonic Chromosome Instability Results in Stable Mosaic Pattern in Human Tissues

Hasmik Mkrtchyan; Madeleine Gross; Sophie Hinreiner; Anna Polytiko; Marina Manvelyan; Kristin Mrasek; Nadezda Kosyakova; Elisabeth Ewers; Heike Nelle; Thomas Liehr; Marianne Volleth; Anja Weise

The discovery of copy number variations (CNV) in the human genome opened new perspectives on the study of the genetic causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However, they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual. Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better understand the aetiology of aging and diseases mediated by somatic mutations.


Acta Chiropterologica | 2002

Systematic Implications of Chromosome Gtg-Band and Bacula Morphology for Southern African Eptesicus and Pipistrellus and Several Other Species of Vespertilioninae (Chiroptera: Vespertilionidae)

Teresa Kearney; Marianne Volleth; Giancarlo Contrafatto; Peter J. Taylor

Phylogenetic analyses of bacular and chromosomal GTG-band characters verify the suggestion that Eptesicus hottentotus (A. Smith, 1833) is the only true Eptesicus Rafinesque, 1820 of the six southern African species (capensis, cf. melckorum, rendalli, somalicus and zuluensis) formerly classified as Eptesicus. GTG-banded chromosomes studied in rendalli, zuluensis and capensis confirm the affiliation of all of them to the genus Neoromicia; these species were previously placed in the Pipistrellus Kaup, 1829, subgenus Neoromicia based on bacular morphology. For karyological reasons, the elevation of the subgenus Neoromicia to generic rank is established by the presence of three Robertsonian fusion chromosomes (7/11, 8/9, 10/12) as distinguishing characters. The move of Hypsugo nanus and cf. melckorum to the genus Neoromicia is indicated by chromosomal analysis and bacular morphology, respectively. The close phylogenetic relationship between Pipistrellus cf. kuhlii and P. rusticus is shown by a shared Robertsonian fusion element (11/12).


Cytogenetic and Genome Research | 2006

Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison

Lei Ao; X. Gu; Qing Feng; J. Wang; Patricia C. M. O’Brien; Beiyuan Fu; Xiuguang Mao; Weiting Su; Yingxiang Wang; Marianne Volleth; Fengtang Yang; Wenhui Nie

The Vespertilionidae is the largest family in the order Chiroptera and has a worldwide distribution in the temperate and tropical regions. In order to further clarify the karyotype relationships at the lower taxonomic level in Vespertilionidae, genome-wide comparative maps have been constructed between Myotis myotis (MMY, 2n = 44) and six vesper bats from China: Myotis altarium (MAL, 2n = 44), Hypsugo pulveratus (HPU, 2n = 44), Nyctalus velutinus (NVE, 2n = 36), Tylonycteris robustula (TRO, 2n = 32), Tylonycteris sp. (TSP, 2n = 30)and Miniopterus fuliginosus (MFU, 2n = 46) by cross-species chromosome painting with a set of painting probes derived from flow-sorted chromosomes of Myotis myotis. Each Myotis myotis autosomal probe detected a single homologous chromosomal segment in the genomes of these six vesper bats except for MMY chromosome 3/4 paint which hybridized onto two chromosomes in the genome of M. fuliginosus. Our results show that Robertsonian translocation is the main mode of karyotype evolution in Vespertilionidae and that the addition of heterochromatic material also plays an important role in the karyotypic evolution of the genera Tylonycteris and Nyctalus. Two conserved syntenic associations (MMY9 + 23 and 18 + 19) could be the synapomorphic features for the genus Tylonycteris. The integration of our maps with the published maps has enabled us to deduce chromosomal homologies between human and these six vesper bats and provided new insight into the karyotype evolution of the family Vespertilionidae.

Collaboration


Dive into the Marianne Volleth's collaboration.

Top Co-Authors

Avatar

Klaus-Gerhard Heller

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Stumm

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Fengtang Yang

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Martin Zenker

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Petra Muschke

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilse Wieland

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sibylle Jakubiczka

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge