Marianne Weidenhaupt
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marianne Weidenhaupt.
Journal of Molecular Recognition | 2000
Myriam Ben Khalifa; Marianne Weidenhaupt; Laurence Choulier; Jean Chatellier; Nathalie Rauffer-Bruyère; Danièle Altschuh; Thierry Vernet
The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi‐conservative amino acid replacements at the VH–VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE® instrument. The substitutions introduced at the VH–VL interface had no significant effects on ka but showed small, significant effects on kd. Mutations in the VH module affected kd not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation FL37L–QL38L, alone or in combination with other mutations, consistently decreased kd about two‐fold in Fab 145P. Other mutations in the VL module had no effect on kd in 145P, but always decreased kd in 1F1h. Moreover, in both systems, small‐magnitude non‐additive effects on kd were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes. Copyright
Biomaterials | 2014
Fabien Dalonneau; Xi Qiu Liu; Rabia Sadir; Jorge Almodóvar; Hichem C. Mertani; Franz Bruckert; Corinne Albiges-Rizo; Marianne Weidenhaupt; Hugues Lortat-Jacob; Catherine Picart
Several chemokines are important in muscle myogenesis and in the recruitment of muscle precursors during muscle regeneration. Among these, the SDF-1α chemokine (CXCL12) is a potent chemoattractant known to be involved in muscle repair. SDF-1α was loaded in polyelectrolyte multilayer films made of poly(L-lysine) and hyaluronan to be delivered locally to myoblast cells in a matrix-bound manner. The adsorbed amounts of SDF-1α were tuned over a large range from 100 ng/cm(2) to 5 μg/cm(2), depending on the initial concentration of SDF-1α in solution, its pH, and on the film crosslinking extent. Matrix-bound SDF-1α induced a striking increase in myoblast spreading, which was revealed when it was delivered from weakly crosslinked films. It also significantly enhanced cell migration in a dose-dependent manner, which again depended on its presentation by the biopolymeric film. The low-crosslinked film was the most efficient in boosting cell migration. Furthermore, matrix-bound SDF-1α also increased the expression of myogenic markers but the fusion index decreased in a dose-dependent manner with the adsorbed amount of SDF-1α. At high adsorbed amounts of SDF-1α, a large number of Troponin T-positive cells had only one nucleus. Overall, this work reveals the importance of the presentation mode of SDF-1α to emphasize its effect on myogenic processes. These films may be further used to provide insight into the role of SDF-1α presented by a biomaterial in physiological or pathological processes.
FEBS Letters | 2013
Laurent Nault; Charlotte Vendrely; Yves Bréchet; Franz Bruckert; Marianne Weidenhaupt
Interactions between proteins and material or cellular surfaces are able to trigger protein aggregation in vitro and in vivo. The human insulin peptide segment LVEALYL is able to accelerate insulin aggregation in the presence of hydrophobic surfaces. We show that this peptide needs to be previously adsorbed on a hydrophobic surface to induce insulin aggregation. Moreover, the study of different mutant peptides proves that its sequence is less important than the secondary structure of the adsorbed peptide on the surface. Indeed, these pro‐aggregative peptides act by providing stable β‐sheets to incoming insulin molecules, thereby accelerating insulin adsorption locally and facilitating the conformational changes required for insulin aggregation. Conversely, a peptide known to form α‐helices on hydrophobic surfaces delays insulin aggregation.
Gene | 1998
Marianne Weidenhaupt; Franz Bruckert; Michel Satre
The N-ethylmaleimide-sensitive fusion protein (NSF) is required for vesicular membrane fusion in multiple cellular functions. We have cloned a cDNA encoding the Dictyostelium discoideum homolog of the NSF protein. This cDNA hybridizes with a single fragment in Southern blots suggesting that NSF is encoded by a single gene in the amoeba. It is expressed constitutively during vegetative growth and throughout the differentiation cycle. The encoded gene product comprises 738 aa with a predicted molecular mass of 82 kDa. It shows the characteristic three-domain structure of NSF proteins. A more divergent amino-terminal part is followed by two highly conserved ATP-binding domains featuring Walker A and B signature sequences. The D. discoideum protein presents an overall aa sequence identity of 44% when compared to known NSF homologs. The monoclonal antibody 2E5 directed against Cricetellus griseus NSF recognizes a protein with a molecular weight of approx. 80 000 in a D. discoideum crude extract and the recombinant D. discoideum His6-NSF expressed in Escherichia coli.
Journal of Functional Biomaterials | 2012
Juergen M. Lackner; Wolfgang Waldhauser; Paul Hartmann; Franz Bruckert; Marianne Weidenhaupt; Roman Major; Marek Sanak; Martin Wiesinger; Daniel Heim
Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.
Biochemistry | 2012
Thomas Ballet; Franz Brukert; Paolo Mangiagalli; Christophe Bureau; Laurence Boulangé; Laurent Nault; Thomas Perret; Marianne Weidenhaupt
We have developed a multiwell-based protein aggregation assay to study the kinetics of insulin adsorption and aggregation on hydrophobic surfaces and to investigate the molecular mechanisms involved. Protein-surface interaction progresses in two phases: (1) a lag phase during which proteins adsorb and prefibrillar aggregates form on the material surface and (2) a growth phase during which amyloid fibers form and then are progressively released into solution. We studied the effect of three bacterial chaperones, DnaK, DnaJ, and ClpB, on insulin aggregation kinetics. In the presence of ATP, the simultaneous presence of DnaK, DnaJ, and ClpB allows good protection of insulin against aggregation. In the absence of ATP, DnaK alone is able to prevent insulin aggregation. Furthermore, DnaK binds to insulin adsorbed on hydrophobic surfaces. This process is slowed in the presence of ATP and can be enhanced by the cochaperone DnaJ. The peptide LVEALYL, derived from the insulin B chain, is known to promote fast aggregation in a concentration- and pH-dependent manner in solution. We show that it also shortens the lag phase for insulin aggregation on hydrophobic surfaces. As this peptide is also a known DnaK substrate, our data indicate that the peptide and the chaperone might compete for a common site during the process of insulin aggregation on hydrophobic surfaces.
Journal of Physical Chemistry B | 2015
Karim Chouchane; Charlotte Vendrely; Myriam Amari; Katie Moreaux; Franz Bruckert; Marianne Weidenhaupt
Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.
Biophysical Journal | 2018
Quentin Lubart; Helene Vitet; Fabien Dalonneau; Aline Le Roy; Mathieu Kowalski; Morgane Lourdin; Christine Ebel; Marianne Weidenhaupt; Catherine Picart
Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (∼30%) of dimers than DD moesin (10-20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors.
Bioanalysis | 2017
Sarah Delshadi; Guillaume Blaire; Paul Kauffmann; Mario Fratzl; Thibaut Devillers; Didier Delabouglise; Marianne Weidenhaupt; Nora Dempsey; Orphée Cugat; Franz Bruckert; Patrice N Marche
AIM We present a fast magnetic immunoassay, combining magnetic nanoparticles and micromagnets. High magnetic field gradients from micromagnets are used to develop a new approach to the standard ELISA. Materials & methods/results: A proof-of-concept based on colorimetric quantification of antiovalbumin antibody in buffer is performed and compared with an ELISA. After optimization, the magnetic immunoassay exhibits a limit of detection (40 ng/ml) and a dynamic range (40-2500 ng/ml) similar to that of ELISAs developed using same biochemical tools. CONCLUSION Micromagnets can be fully integrated in multiwell plates at low cost to allow the efficient capture of immunocomplexes carried by magnetic nanoparticles. The method is generic and permits to perform magnetic ELISA in 30 min.
Journal of Photochemistry and Photobiology B-biology | 2018
Karim Chouchane; Isabelle Pignot-Paintrand; Franz Bruckert; Marianne Weidenhaupt
Insulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface. These nuclei then lead to the formation of fibrils presenting a rapid growth during the elongation phase. Here we describe a novel mechanism of insulin amyloid aggregation which is surprisingly devoid of a lag-time for nucleation. The excitation of thioflavin T by visible light at 440 nm induces the aggregation of thioflavin T-positive insulin fibrils on hydrophobic surfaces in the presence of strong agitation and at physiological pH. This process is material surface-induced and depends on the fact that surface-adsorbed insulin can bind thioflavin T. Light-induced insulin aggregation kinetics is thioflavin T-mediated and is based on an energy transfer from visible light to the protein via thioflavin T. It relies on a constant supply of thioflavin T and insulin from the solution to the aggregate. The growth rate increases with the irradiance and with the concentration of thioflavin T. The supply of insulin seems to be the limiting factor of aggregate growth. This light-induced aggregation process allows the formation of local surface-bound aggregation patterns.