Mariano Beguerisse-Díaz
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariano Beguerisse-Díaz.
Journal of the Royal Society Interface | 2014
Mariano Beguerisse-Díaz; Guillermo Garduño-Hernández; Borislav Vangelov; Sophia N. Yaliraki; Mauricio Barahona
Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks.
PLOS Computational Biology | 2016
Karol A. Bacik; Michael T. Schaub; Mariano Beguerisse-Díaz; Yazan N. Billeh; Mauricio Barahona
We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.
BMC Systems Biology | 2012
Mariano Beguerisse-Díaz; Mercedes C Hernández-Gómez; Alessandro M Lizzul; Mauricio Barahona; Radhika Desikan
BackgroundStomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close.ResultsToshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour.ConclusionsOur experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene) and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.
Physical Biology | 2012
Heather A. Harrington; Michał Komorowski; Mariano Beguerisse-Díaz; Gian Michele Ratto; Michael P. H. Stumpf
The mitogen-activated protein kinase (MAPK) family of proteins is involved in regulating cellular fates such as proliferation, differentiation and apoptosis. In particular, the dynamics of the Erk/Mek system, which has become the canonical example for MAPK signaling systems, have attracted considerable attention. Erk is encoded by two genes, Erk1 and Erk2, that until recently had been considered equivalent as they differ only subtly at the sequence level. However, these proteins exhibit radically different trafficking between cytoplasm and nucleus and this fact may have functional implications. Here we use spatially resolved data on Erk1/2 to develop and analyze spatio-temporal models of these cascades, and we discuss how sensitivity analysis can be used to discriminate between mechanisms. Our models elucidate some of the factors governing the interplay between signaling processes and the Erk1/2 localization in different cellular compartments, including competition between Erk1 and Erk2. Our approach is applicable to a wide range of signaling systems, such as activation cascades, where translocation of molecules occurs. Our study provides a first model of Erk1 and Erk2 activation and their nuclear shuttling dynamics, revealing a role in the regulation of the efficiency of nuclear signaling.
Journal of the Royal Society Interface | 2012
Mariano Beguerisse-Díaz; Baojun Wang; Radhika Desikan; Mauricio Barahona
Estimating parameters from data is a key stage of the modelling process, particularly in biological systems where many parameters need to be estimated from sparse and noisy datasets. Over the years, a variety of heuristics have been proposed to solve this complex optimization problem, with good results in some cases yet with limitations in the biological setting. In this work, we develop an algorithm for model parameter fitting that combines ideas from evolutionary algorithms, sequential Monte Carlo and direct search optimization. Our method performs well even when the order of magnitude and/or the range of the parameters is unknown. The method refines iteratively a sequence of parameter distributions through local optimization combined with partial resampling from a historical prior defined over the support of all previous iterations. We exemplify our method with biological models using both simulated and real experimental data and estimate the parameters efficiently even in the absence of a priori knowledge about the parameters.
Network Science | 2013
Heather A. Harrington; Mariano Beguerisse-Díaz; M. Puck Rombach; Laura M. Keating; Mason A. Porter
We discuss our outreach efforts to introduce school students to network science and explain why researchers who study networks should be involved in such outreach activities. We provide overviews of modules that we have designed for these efforts, comment on our successes and failures, and illustrate the potentially enormous impact of such outreach efforts.
ieee global conference on signal and information processing | 2013
Mariano Beguerisse-Díaz; Borislav Vangelov; Mauricio Barahona
We present a framework to cluster nodes in directed networks according to their roles by combining Role-Based Similarity (RBS) and Markov Stability, two techniques based on flows. First we compute the RBS matrix, which contains the pairwise similarities between nodes according to the scaled number of in- and out-directed paths of different lengths. The weighted RBS similarity matrix is then transformed into an undirected similarity network using the Relaxed Minimum-Spanning Tree (RMST) algorithm, which uses the geometric structure of the RBS matrix to unblur the network, such that edges between nodes with high, direct RBS are preserved. Finally, we partition the RMST similarity network into role-communities of nodes at all scales using Markov Stability to find a robust set of roles in the network. We showcase our framework through a biological and a man-made network.
arXiv: Physics and Society | 2017
Mariano Beguerisse-Díaz; Amy K. McLennan; Guillermo Garduño-Hernández; Mauricio Barahona; Stanley J. Ulijaszek
Social media are being increasingly used for health promotion, yet the landscape of users, messages and interactions in such fora is poorly understood. Studies of social media and diabetes have focused mostly on patients, or public agencies addressing it, but have not looked broadly at all of the participants or the diversity of content they contribute. We study Twitter conversations about diabetes through the systematic analysis of 2.5 million tweets collected over 8 months and the interactions between their authors. We address three questions. (1) What themes arise in these tweets? (2) Who are the most influential users? (3) Which type of users contribute to which themes? We answer these questions using a mixed-methods approach, integrating techniques from anthropology, network science and information retrieval such as thematic coding, temporal network analysis and community and topic detection. Diabetes-related tweets fall within broad thematic groups: health information, news, social interaction and commercial. At the same time, humorous messages and references to popular culture appear consistently, more than any other type of tweet. We classify authors according to their temporal ‘hub’ and ‘authority’ scores. Whereas the hub landscape is diffuse and fluid over time, top authorities are highly persistent across time and comprise bloggers, advocacy groups and NGOs related to diabetes, as well as for-profit entities without specific diabetes expertise. Top authorities fall into seven interest communities as derived from their Twitter follower network. Our findings have implications for public health professionals and policy makers who seek to use social media as an engagement tool and to inform policy design.
Royal Society Open Science | 2017
David J. P. O’Sullivan; Guillermo Garduño-Hernández; James P. Gleeson; Mariano Beguerisse-Díaz
We examine the relationship between social structure and sentiment through the analysis of a large collection of tweets about the Irish Marriage Referendum of 2015. We obtain the sentiment of every tweet with the hashtags #marref and #marriageref that was posted in the days leading to the referendum, and construct networks to aggregate sentiment and use it to study the interactions among users. Our analysis shows that the sentiment of outgoing mention tweets is correlated with the sentiment of incoming mentions, and there are significantly more connections between users with similar sentiment scores than among users with opposite scores in the mention and follower networks. We combine the community structure of the follower and mention networks with the activity level of the users and sentiment scores to find groups that support voting ‘yes’ or ‘no’ in the referendum. There were numerous conversations between users on opposing sides of the debate in the absence of follower connections, which suggests that there were efforts by some users to establish dialogue and debate across ideological divisions. Our analysis shows that social structure can be integrated successfully with sentiment to analyse and understand the disposition of social media users around controversial or polarizing issues. These results have potential applications in the integration of data and metadata to study opinion dynamics, public opinion modelling and polling.
Journal of the Royal Society Interface | 2016
Mariano Beguerisse-Díaz; Radhika Desikan; Mauricio Barahona
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.