Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariaserena Boraso is active.

Publication


Featured researches published by Mariaserena Boraso.


Neurobiology of Disease | 2013

Effects of central and peripheral inflammation on hippocampal synaptic plasticity.

Massimiliano Di Filippo; Davide Chiasserini; Fabrizio Gardoni; Barbara Viviani; Alessandro Tozzi; Carmela Giampà; Cinzia Costa; Michela Tantucci; Elisa Zianni; Mariaserena Boraso; Sabrina Siliquini; Veronica Ghiglieri; Elisa Colcelli; David Baker; Paola Sarchielli; Francesca Fusco; Monica Di Luca; Paolo Calabresi

The central nervous system (CNS) and the immune system are known to be engaged in an intense bidirectional crosstalk. In particular, the immune system has the potential to influence the induction of brain plastic phenomena and neuronal networks functioning. During direct CNS inflammation, as well as during systemic, peripheral, inflammation, the modulation exerted by neuroinflammatory mediators on synaptic plasticity might negatively influence brain neuronal networks functioning. The aim of the present study was to investigate, by using electrophysiological techniques, the ability of hippocampal excitatory synapses to undergo synaptic plasticity during the initial clinical phase of an experimental model of CNS (experimental autoimmune encephalomyelitis, EAE) as well as following a systemic inflammatory trigger. Moreover, we compared the morphologic, synaptic and molecular consequences of central neuroinflammation with those accompanying peripheral inflammation. Hippocampal long-term potentiation (LTP) has been studied by extracellular field potential recordings in the CA1 region. Immunohistochemistry was performed to investigate microglia activation. Western blot and ELISA assays have been performed to assess changes in the subunit composition of the synaptic glutamate NMDA receptor and the concentration of pro-inflammatory cytokines in the hippocampus. Significant microglial activation together with an impairment of CA1 LTP was present in the hippocampus of mice with central as well as peripheral inflammation. Interestingly, exclusively during EAE but not during systemic inflammation, the impairment of hippocampal LTP was paralleled by a selective reduction of the NMDA receptor NR2B subunit levels and a selective increase of interleukin-1β (IL1β) levels. Both central and peripheral inflammation-triggered mechanisms can activate CNS microglia and influence the function of CNS synapses. During direct CNS inflammation these events are accompanied by detectable changes in synaptic glutamate receptors subunit composition and in the levels of the pro-inflammatory cytokine IL1β.


Journal of Neuroinflammation | 2011

Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation

Fabrizio Gardoni; Mariaserena Boraso; Elisa Zianni; Emanuela Corsini; C. Galli; Flaminio Cattabeni; Marina Marinovich; Monica Di Luca; Barbara Viviani

Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that contributes to neuronal injury in various degenerative diseases, and is therefore a potential therapeutic target. It exerts its biological effect by activating the interleukin-1 receptor type I (IL-1RI) and recruiting a signalling core complex consisting of the myeloid differentiation primary response protein 88 (MyD88) and the IL-1R accessory protein (IL-1RAcP). This pathway has been clearly described in the peripheral immune system, but only scattered information is available concerning the molecular composition and distribution of its members in neuronal cells. The findings of this study show that IL-1RI and its accessory proteins MyD88 and IL-1RAcP are differently distributed in the hippocampus and in the subcellular compartments of primary hippocampal neurons. In particular, only IL-1RI is enriched at synaptic sites, where it co-localises with, and binds to the GluN2B subunit of NMDA receptors. Furthermore, treatment with NMDA increases IL-1RI interaction with NMDA receptors, as well as the surface expression and localization of IL-1RI at synaptic membranes. IL-1β also increases IL-1RI levels at synaptic sites, without affecting the total amount of the receptor in the plasma membrane. Our results reveal for the first time the existence of a dynamic and functional interaction between NMDA receptor and IL-1RI systems that could provide a molecular basis for IL-1β as a neuromodulator in physiological and pathological events relying on NMDA receptor activation.


Journal of Molecular Endocrinology | 2012

Neuroactive steroids, their metabolites, and neuroinflammation

Silvia Giatti; Mariaserena Boraso; Roberto Cosimo Melcangi; Barbara Viviani

Neuroinflammation represents a common feature of many neurodegenerative diseases implicated both in their onset and progression. Neuroactive steroids act as physiological regulators and protective agents in the nervous system. Therefore, the attention of biomedical research has been recently addressed in evaluating whether neuroactive steroids, such as progestagens, androgens, and estrogens may also affect neuroinflammatory pathways. Observations so far obtained suggest a general anti-inflammatory effect with a beneficial relapse on several neurodegenerative experimental models, thus confirming the potentiality of a neuroprotective strategy based on neuroactive steroids. In this scenario, neuroactive steroid metabolism and the sophisticated machinery involved in their signaling are becoming especially attractive. In particular, because metabolism of neuroactive steroids as well as expression of their receptors is affected during the course of neurodegenerative events, a crucial role of progesterone and testosterone metabolites in modulating neuroinflammation and neurodegeneration may be proposed. In the present review, we will address this issue, providing evidence supporting the hypothesis that the efficacy of neuroactive steroids could be improved through the use of their metabolites.


Journal of Neuroendocrinology | 2012

Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis

Silvia Giatti; Donatella Caruso; Mariaserena Boraso; Federico Abbiati; Elisa Ballarini; Donato Calabrese; Marzia Pesaresi; Roberta Rigolio; María Santos-Galindo; Barbara Viviani; Guido Cavaletti; Luis Miguel Garcia-Segura; R.C. Melcangi

Observations so far obtained in experimental autoimmune encephalomyelitis (EAE) have revealed the promising neuroprotective effects exerted by progesterone (PROG). The findings suggest that this neuroactive steroid may potentially represent a therapeutic tool for multiple sclerosis (MS). However, up to now, the efficacy of PROG has been only tested in the acute phase of the disease, whereas it is well known that MS expresses different features depending on the phase of the disease. Accordingly, we have evaluated the effect of PROG treatment in EAE induced in Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction show that PROG treatment exerts a beneficial effect on clinical score, confirming surrogate parameters of spinal cord damage in chronic EAE (i.e. reactive microglia, cytokine levels, activity of the Na+,K+‐ATPase pump and myelin basic protein expression). An increase of the levels of dihydroprogesterone and isopregnanolone (i.e. two PROG metabolites) was also observed in the spinal cord after PROG treatment. Taken together, these results indicate that PROG is effective in reducing the severity of chronic EAE and, consequently, may have potential with respect to MS treatment.


PLOS ONE | 2012

Somatostatin Modulates Insulin-Degrading-Enzyme Metabolism: Implications for the Regulation of Microglia Activity in AD

Grazia R. Tundo; Chiara Ciaccio; Diego Sbardella; Mariaserena Boraso; Barbara Viviani; Massimiliano Coletta; Stefano Marini

The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimers disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.


Neurotoxicology | 2014

Perspectives on neuroinflammation and excitotoxicity: A neurotoxic conspiracy?

Barbara Viviani; Mariaserena Boraso; Natalia Marchetti; Marina Marinovich

Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.


Brain Behavior and Immunity | 2014

Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner.

Barbara Viviani; Mariaserena Boraso; Manuel Valero; Fabrizio Gardoni; Eva M. Marco; Ricardo Llorente; Emanuela Corsini; C. Galli; Monica Di Luca; Marina Marinovich; Meritxell López-Gallardo; Maria-Paz Viveros

Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.


Journal of Neuroimmune Pharmacology | 2013

Multimodal Analysis in Acute and Chronic Experimental Autoimmune Encephalomyelitis

Silvia Giatti; Mariaserena Boraso; Federico Abbiati; Elisa Ballarini; Donato Calabrese; María Santos-Galindo; Roberta Rigolio; Marzia Pesaresi; Donatella Caruso; Barbara Viviani; Guido Cavaletti; Luis Miguel Garcia-Segura; Roberto Cosimo Melcangi

Different experimental autoimmune encephalomyelitis models (EAE) have been developed. However, due to the different experimental conditions applied, observations simultaneously considering different pathological targets are still scarce. Using EAE induced in Dark Agouti rats with syngenic whole spinal cord homogenate suspended in incomplete Freund’s adjuvant, we here analyze neurosteroidogenic machinery, cytokine levels, microglial cells, infiltration of inflammatory cells, myelin proteins and Na+, K+-ATPase pump activity in the spinal cord. Data obtained in the acute phase of the disease confirmed that neurological signs were accompanied by the presence of perivascular infiltrating T cells (CD3+ cells) and activated monocytic/microglial cells (ED1+ and MHC-II+) in the spinal cord. In particular, the number of MHC-II+ cells was significantly increased in association with increased expression of pro- (i.e., TNF-α, IL-1β) and anti-inflammatory (i.e., TGF-β) cytokines as well as with decreased expression of proteolipid protein and myelin basic protein. During the chronic phase of the disease, the number of MHC-II+ cells was still increased, although less than in the acute phase. Changes in the number of MHC-II+ cells were associated with decreased Na+,K+-ATPase enzymatic activity. A general decrease in the levels of neuroactive steroids, with the exception of an increase in tetrahydroprogesterone and 17β-estradiol, was detected in the acute phase. These changes were maintained or reverted in the chronic phase of EAE. In conclusion, we report that modifications in the neuroimmune response in the acute and chronic phases of EAE are associated with specific changes in myelin proteins, Na+,K+-ATPase pump and in the levels of neuroactive steroids.


Molecular Medicine | 2008

Endogenous erythropoietin as part of the cytokine network in the pathogenesis of experimental autoimmune encephalomyelitis.

Manuela Mengozzi; Ilaria Cervellini; Paolo Bigini; Sara Martone; Antonella Biondi; Rosetta Pedotti; Barbara Gallo; Sara Barbera; Tiziana Mennini; Mariaserena Boraso; Marina Marinovich; Edwige Petit; Myriam Bernaudin; Roberto Bianchi; Barbara Viviani; Pietro Ghezzi

Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1α, but not HIF-2α, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)-γ and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glialcells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS.


Toxicology Letters | 2008

Dithiocarbamate propineb induces acetylcholine release through cytoskeletal actin depolymerization in PC12 cells

Barbara Viviani; Stefano Bartesaghi; Marco Binaglia; Emanuela Corsini; Mariaserena Boraso; Enrico Grazi; C. Galli; Marina Marinovich

Neurological complications as well as movement disorders are relevant symptoms in animals and humans chronically exposed to dithiocarbamates. Using rat pheochromocytoma cells differentiated by NGF (PC12), we investigated whether propineb affects acetylcholine (Ach) release and the molecular mechanisms involved. Propineb (0.001-100 nM) dose-dependently increased Ach release from PC12. Thus, 0.001-1 nM propineb-induced Ach release, reaching a maximal effect ( approximately 50%) at 0.1-1 nM. Higher concentrations of propineb (10-100 nM) caused a progressive disappearance of the effect. Chelation of extra- and intracellular Ca(2+) did not affect Ach release by propineb, which was prevented by the actin stabilizer jasplakinolide (500 nM). Accordingly, actin depolymerization was observed after exposure of differentiated PC12 to 0.1-1 nM propineb, a loss of effect was evident at higher concentrations (100 nM), and the effect was Ca(2+)-independent. Disulfiram, a related dithiocarbamate not coordinated with Zn(2+), also depolymerized actin, suggesting the involvement of the organic structure of dithiocarbamates rather than the leakage of Zn(2+). Nevertheless, propineb did not depolymerize actin in a cell-free system. These data suggest that dithiocarbamates, through the activation of intracellular cascade(s), impair cytoskeletal actin. This effect may contribute to affect synaptic vesicles processing resulting in an impaired cholinergic transmission.

Collaboration


Dive into the Mariaserena Boraso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge