Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariasole Di Carli is active.

Publication


Featured researches published by Mariasole Di Carli.


Plant Physiology | 2010

Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks

Anita Zamboni; Mariasole Di Carli; Flavia Guzzo; Matteo Stocchero; Sara Zenoni; Alberto Ferrarini; Paola Tononi; Ketti Toffali; Angiola Desiderio; Kathryn S. Lilley; M. Enrico Pè; Eugenio Benvenuto; Massimo Delledonne; Mario Pezzotti

The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed.


Journal of Proteomics | 2009

Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes

Linda Bianco; Loredana Lopez; Anna Grazia Scalone; Mariasole Di Carli; Angiola Desiderio; Eugenio Benvenuto; Gaetano Perrotta

Strawberry is worldwide appreciated for its unique flavour and as a source of macronutrients and high levels of antioxidants which are closely related to fruit ripening. We report the investigation of the complex physiological processes of strawberry fruit ripening at proteomic level. Multiple approaches were used to investigate strawberry fruit proteome. In particular, a proteome reference map of strawberry fruit from Queen Elisa élite genotype was achieved by 2-D analyses of proteins extracted from berries at immature, turning and red stages to isolate a set of proteins commonly present in fruit during ripening. In addition, several hundreds of proteins were identified by a combination of multidimensional liquid chromatography/tandem mass spectrometry and one dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry. DIGE technology was also used to identify differentially accumulated proteins during ripening and to correlate fruit protein expression with quality traits of the reference variety Queen Elisa and its parental genotypes. A number of constitutive or differentially accumulated proteins were found. Generally, the pattern of protein expression as well as the putative function of identified proteins argues for a role in major fruit physiological developmental and ripening processes. The role of some of the identified proteins is discussed in relation to strawberry fruit ripening and to quality traits. Consequently, this study provides the first characterization of the strawberry fruit proteome and the time course of variation during maturation by using multiple approaches.


Journal of Proteome Research | 2009

Leaf proteome analysis of transgenic plants expressing antiviral antibodies

Mariasole Di Carli; Maria Elena Villani; Giovanni Renzone; Luca Nardi; Alessandra Pasquo; Rosella Franconi; Andrea Scaloni; Eugenio Benvenuto; Angiola Desiderio

The expression of exogenous antibodies in plant is an effective strategy to confer protection against viral infection or to produce molecules with pharmaceutical interest. However, the acceptance of the transgenic technology to obtain self-protecting plants depends on the assessment of their substantial equivalence compared to non-modified crops with an established history of safe use. In fact, the possibility exists that the introduction of transgenes in plants may alter expression of endogenous genes and/or normal production of metabolites. In this study, we investigated whether the expression in plant of recombinant antibodies directed against viral proteins may influence the host leaf proteome. Two transgenic plant models, generated by Agrobacterium tumefaciens-mediated transformation, were analyzed for this purpose, namely, Lycopersicon esculentum cv. MicroTom and Nicotiana benthamiana, expressing recombinant antibodies against cucumber mosaic virus and tomato spotted wilt virus, respectively. To obtain a significant representation of plant proteomes, optimized extraction procedures have been devised for each plant species. The proteome repertoire of antibody-expressing and control plants was compared by 2-DE associated to DIGE technology. Among the 2000 spots detected within the gels, about 10 resulted differentially expressed in each transgenic model and were identified by MALDI-TOF PMF and muLC-ESI-IT-MS/MS procedures. Protein variations were restricted to a limited number of defined differences with an average ratio below 2.4. Most of the differentially expressed proteins were related to photosynthesis or defense function. The overall results suggest that the expression of recombinant antibodies in both systems does not significantly alter the leaf proteomic profile, contributing to assess the biosafety of resistant plants expressing antiviral antibodies.


Journal of Proteome Research | 2012

Recent Insights into Plant–Virus Interactions through Proteomic Analysis

Mariasole Di Carli; Eugenio Benvenuto; Marcello Donini

Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative second generation proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This omic approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.


Journal of Proteome Research | 2011

Two-Dimensional Differential in Gel Electrophoresis (2D-DIGE) Analysis of Grape Berry Proteome during Postharvest Withering

Mariasole Di Carli; Anita Zamboni; Mario Enrico Pè; Mario Pezzotti; Kathryn S. Lilley; Eugenio Benvenuto; Angiola Desiderio

The practice of postharvest withering is commonly used to correct quality traits and sugar concentration of high quality wines. To date, changes in the metabolome during the berry maturation process have been well documented; however, the biological events which occur at the protein level have yet to be fully investigated. To gain insight into the postharvest withering process, we studied the protein expression profiles of grape (Corvina variety) berry development focusing on withering utilizing a two-dimensional differential in gel electrophoresis (2D-DIGE) proteomics approach. Comparative analysis revealed changes in the abundance of numerous soluble proteins during the maturation and withering processes. On a total of 870 detected spots, 90 proteins were differentially expressed during berry ripening/withering and 72 were identified by MS/MS analysis. The majority of these proteins were related to stress and defense activity (30%), energy and primary metabolism (25%), cytoskeleton remodelling (7%), and secondary metabolism (5%). Moreover, this study demonstrates an active modulation of metabolic pathways throughout the slow dehydration process, including de novo protein synthesis in response to the stress condition and further evolution of physiological processes originated during ripening. These data represent an important insight into the withering process in terms of both Vitis germplasm characterization and knowledge which can assist quality improvement.


Journal of Proteome Research | 2010

Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato

Mariasole Di Carli; Maria Elena Villani; Linda Bianco; Raffaele Lombardi; Gaetano Perrotta; Eugenio Benvenuto; Marcello Donini

Cucumber mosaic virus (CMV), a member of the Cucumovirus genus, is the causal agent of several plant diseases in a wide range of host species, causing important economic losses in agriculture. Because of the lack of natural resistance genes in most crops, different genetic engineering strategies have been adopted to obtain virus-resistant plants. In a previous study, we described the engineering of transgenic tomato plants expressing a single-chain variable fragment antibody (scFv G4) that are specifically protected from CMV infection. In this work, we characterized the leaf proteome expressed during compatible plant-virus interaction in wild type and transgenic tomato. Protein changes in both inoculated and apical leaves were revealed using two-dimensional gel electrophoresis (2-DE) coupled to differential in gel electrophoresis (DIGE) technology. A total of 2084 spots were detected, and 50 differentially expressed proteins were identified by nanoscale liquid chromatographic-electrospray ionization-ion trap-tandem mass spectrometry (nLC-ESI-IT-MS/MS). The majority of these proteins were related to photosynthesis (38%), primary metabolism (18%), and defense activity (14%) and demonstrated to be actively down regulated by CMV in infected leaves. Moreover, our analysis revealed that asymptomatic apical leaves of transgenic inoculated plants had no protein profile alteration as compared to control wild type uninfected plants demonstrating that virus infection is confined to the inoculated leaves and systemic spread is hindered by the CMV coat protein (CP)-specific scFv G4 molecules. Our work is the first comparative study on compatible plant-virus interactions between engineered immunoprotected and susceptible wild type tomato plants, contributing to the understanding of antibody-mediated disease resistance mechanisms.


Transgenic Research | 2010

Optimisation of the purification process of a tumour-targeting antibody produced in N. benthamiana using vacuum-agroinfiltration

Raffaele Lombardi; Maria Elena Villani; Mariasole Di Carli; Patrizia Brunetti; Eugenio Benvenuto; Marcello Donini

It was previously demonstrated that the tumour-targeting antibody mAb H10 can be transiently expressed and purified at high levels in Nicotiana benthamiana by using a vacuum-agroinfiltration system boosted by the use of a virus silencing suppressor protein. Scope of this work was to analyse different steps of protein extraction from agroinfiltrated leaves to optimise the purification process of the secretory mAb H10 providing new insights in the field of large-scale plant production. Two different extraction procedures (mechanical shearing/homogenisation and recovery of intercellular fluids -IFs-) were evaluated and compared in terms of purified antibody yields, antibody degradation and total phenolic compounds content. Mechanical grinding from fresh leaf tissues gave the highest purification yield (75xa0mg/kg Fresh Weight -75% intact tetrameric IgG-) and total phenolics concentration in the range of 420xa0μg/g FW. The second extraction procedure, based on the recovery of IFs, gave purification yields of 15–20xa0mg/kg FW (corresponding to 27% of total soluble protein) in which about 40% of purified protein is constituted by fully assembled IgG with a total phenolic compounds content reduced by one order of magnitude (21xa0μg/g FW). Despite a higher antibody degradation, purification from intercellular fluids demonstrated to be very promising since extraction procedures resulted extremely fast and amenable to scaling-up. Overall data highlight that different extraction procedures can dramatically affect the proteolytic degradation and quality of antibody purified from agroinfiltrated N. benthamiana leaves. Based on these results, we optimised a pilot-scale purification protocol using a two-step purification procedure from batches of fresh agroinfiltrated leaves (250xa0g) allowing purification of milligram quantities (average yield 40xa0mg/kg FW) of fully assembled and functional IgG with a 99.4% purity, free of phenolic and alkaloid compounds with low endotoxin levels (<1 EU/ml).


Proteomics | 2012

2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves

Sara Falvo; Mariasole Di Carli; Angiola Desiderio; Eugenio Benvenuto; Andrea Moglia; Twan America; Sergio Lanteri; Alberto Acquadro

Plants respond to ultraviolet stress inducing a self‐defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV‐absorbing phenolic compounds (e.g. flavonoids). Globe artichoke is an attractive species for studying the protein network involved in UV stress response, being characterized by remarkable levels of inducible antioxidants. Proteomic tools can assist the evaluation of the expression patterns of UV‐responsive proteins and we applied the difference in‐gel electrophoresis (DIGE) technology for monitoring the globe artichoke proteome variation at four time points following an acute UV‐C exposure. A total of 145 UV‐C‐modulated proteins were observed and 119 were identified by LC‐MS/MS using a ∼144u2009000 customized Compositae protein database, which included about 19u2009000 globe artichoke unigenes. Proteins were Gene Ontology (GO) categorized, visualized on their pathways and their behaviour was discussed. A predicted protein interaction network was produced and highly connected hub‐like proteins were highlighted. Most of the proteins differentially modulated were chloroplast located, involved in photosynthesis, sugar metabolisms, protein folding and abiotic stress. The identification of UV‐C‐responsive proteins may contribute to shed light on the molecular mechanisms underlying plant responses to UV stress.


Bioengineered bugs | 2015

Antibody proteolysis: a common picture emerging from plants

Marcello Donini; Raffaele Lombardi; Chiara Lonoce; Mariasole Di Carli; Carla Marusic; Veronica Morea; Patrizio Di Micco

We have recently characterized the degradation profiles of 2 human IgG1 monoclonal antibodies, the tumor-targeting mAb H10 and the anti-HIV mAb 2G12. Both mAbs were produced in plants either as stable transgenics or using a transient expression system based on leaf agroinfiltration. The purified antibodies were separated by 1DE and protein bands were characterized by N-terminal sequencing. The proteolytic cleavage sites identified in the heavy chain (HC) of both antibodies were localized in 3 inter-domain regions, suggesting that the number of proteolytic cleavage events taking place in plants is limited. One of the cleavage sites, close to the hinge region, was common to both antibodies.


Fems Microbiology Letters | 2016

Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging

Mariasole Di Carli; Patrizia De Rossi; Patrizia Paganin; Antonella Del Fiore; Francesca Lecce; Cristina Capodicasa; Linda Bianco; Gaetano Perrotta; Alessio Mengoni; Giovanni Bacci; Lorenza Daroda; Claudia Dalmastri; Marcello Donini; Annamaria Bevivino

With the growing demand of fresh-cut vegetables, a variety of packaging films are produced specifically to improve safety and quality of the fresh vegetables over the storage period. The aim of our work was to evaluate the influence of different packaging films on the quality of fresh-cut lettuce analyzing changes in bacterial community composition and modifications at the proteome level, by means of culture-dependent/culture-independent methods and differential gel electrophoresis combined with mass spectrometry analysis. Total viable counts indicated the presence of a highly variable and complex microbial flora, around a mean value of 6.26 log10 CFUxa0g(-1). Analysis of terminal-restriction fragment length polymorphism data indicated that bacterial communities changed with packaging films and time, showing differences in community composition and diversity indices between the commercially available package (F) and the new packages (A and C), in the first days after packaging. Also proteomic analysis revealed significant changes, involving proteins related to energy metabolism, photosynthesis, plant defense and oxidative stress processes, between F and A/C packages. In conclusion, microbiological and proteomic analysis have proved to be powerful tools to provide new insights into both the composition of leaf-associated bacterial communities and protein content of fresh-cut lettuce during the shelf-life storage process.

Collaboration


Dive into the Mariasole Di Carli's collaboration.

Researchain Logo
Decentralizing Knowledge