Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariateresa Cipriano is active.

Publication


Featured researches published by Mariateresa Cipriano.


PLOS ONE | 2011

Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement

Giuseppe Esposito; Caterina Scuderi; Marta Valenza; Giuseppina I. Togna; Valentina Latina; Daniele De Filippis; Mariateresa Cipriano; Maria Rosaria Carratù; Teresa Iuvone; Luca Steardo

Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimers disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on β-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported.


PLOS ONE | 2011

Cannabidiol Reduces Intestinal Inflammation through the Control of Neuroimmune Axis

Daniele De Filippis; Giuseppe Esposito; Carla Cirillo; Mariateresa Cipriano; Benedicte Y. De Winter; Caterina Scuderi; Giovanni Sarnelli; Rosario Cuomo; Luca Steardo; Joris G. De Man; Teresa Iuvone

Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects. Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC) and from intestinal segments of mice with LPS-induced intestinal inflammation. CBD markedly counteracted reactive enteric gliosis in LPS-mice trough the massive reduction of astroglial signalling neurotrophin S100B. Histological, biochemical and immunohistochemical data demonstrated that S100B decrease was associated with a considerable decrease in mast cell and macrophages in the intestine of LPS-treated mice after CBD treatment. Moreover the treatment of LPS-mice with CBD reduced TNF-α expression and the presence of cleaved caspase-3. Similar results were obtained in ex vivo cultured human derived colonic biopsies. In biopsies of UC patients, both during active inflammation and in remission stimulated with LPS+INF-γ, an increased glial cell activation and intestinal damage were evidenced. CBD reduced the expression of S100B and iNOS proteins in the human biopsies confirming its well documented effect in septic mice. The activity of CBD is, at least partly, mediated via the selective PPAR-gamma receptor pathway. CBD targets enteric reactive gliosis, counteracts the inflammatory environment induced by LPS in mice and in human colonic cultures derived from UC patients. These actions lead to a reduction of intestinal damage mediated by PPARgamma receptor pathway. Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to treat inflammatory bowel diseases.


Molecular Pain | 2011

Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats

Daniele De Filippis; Livio Luongo; Mariateresa Cipriano; Enza Palazzo; Maria Pia Cinelli; Vito de Novellis; Sabatino Maione; Teresa Iuvone

The aim of this study was to obtain evidences of a possible analgesic role for palmitoylethanolamide (PEA) in chronic granulomatous inflammation sustained by mast cell (MC) activation in rats at 96 hours. PEA (200-400-800 μg/mL), locally administered at time 0, reduced in a concentration-dependent manner the expression and release of NGF in comparison with saline-treated controls. PEA prevented nerve formation and sprouting, as shown by histological analysis, reduced mechanical allodynia, evaluated by Von Frey filaments, and inhibited dorsal root ganglia activation. These results were supported by the evidence that MCs in granuloma were mainly degranulated and closely localized near nerve fibres and PEA significantly reduced MC degranulation and nerves fibre formation. These findings are the first evidence that PEA, by the modulation of MC activation, controls pain perception in an animal model of chronic inflammation, suggesting its potential use for the treatment of all those painful conditions in which MC activation is an initial key step.


Pharmacological Research | 2010

Levels of endocannabinoids and palmitoylethanolamide and their pharmacological manipulation in chronic granulomatous inflammation in rats

D. De Filippis; Alessandra D’Amico; Mariateresa Cipriano; Stefania Petrosino; Pierangelo Orlando; V. Di Marzo; Teresa Iuvone

The endocannabinoids anandamide and 2-arachidonoylglycerol, and the anandamide-congener, palmitoylethanolamide, are all substrates for the enzyme fatty acid amide hydrolase, and are endowed with anti-inflammatory actions exerted via cannabinoid receptors or, in the case of palmitoylethanolamide, also via other targets. We investigated the role of the endocannabinoid system during granuloma formation, a model of chronic inflammation sustained by neoangiogenesis, in rats. Granuloma was induced by subcutaneous lambda-carrageenin-soaked sponge implants on the back of male Wistar rats. After 96h, granulomas were detached and tissue formation was evaluated as wet weight; the endocannabinoid system was evaluated by the measurement of endocannabinoid levels, by LC-MS, and of cannabinoid receptor expression, by western blot analysis. Moreover, angiogenesis was evaluated by the measurement of both hemoglobin content and CD31 protein expression. Arachidonoylserotonin (AA-5-HT, 12.5-50mug/ml), an inhibitor of FAAH, and palmitoylethanolamide (PEA, 200-800mug/ml) were given locally only once at the time of implantation. Granuloma formation was accompanied by a significant decrease in endocannabinoid and palmitoylethanolamide levels paralleled by increased levels of the fatty acid amide hydrolase, responsible for their breakdown. Moreover, an increase of cannabinoid receptor expression was also observed. Pharmacological elevation of endocannabinoids and palmitoylethanolamide, obtained separately by arachidonoylserotonin and exogenous palmitoylethanolamide treatment, dose-dependently reduced inflammatory hallmarks including tumor necrosis factor-alpha as well as granuloma-dependent angiogenesis. The effect of arachidonoylserotonin was accompanied by near-normalization of 2-arachidonoylglycerol and palmitoylethanolamide levels in the tissue. These findings suggest that chronic inflammation might develop also because of endocannabinoid and palmitoylethanolamide tissue concentration impairment, the correction of which might be exploited to develop new anti-inflammatory drugs.


Endocrinology | 2010

The Levels of the Endocannabinoid Receptor CB2 and Its Ligand 2-Arachidonoylglycerol Are Elevated in Endometrial Carcinoma

Maurizio Guida; Alessia Ligresti; Daniele De Filippis; Alessandra D'Amico; Stefania Petrosino; Mariateresa Cipriano; Giuseppe Bifulco; Sara Simonetti; Pierangelo Orlando; Luigi Insabato; Carmine Nappi; Attilio Di Spiezio Sardo; Vincenzo Di Marzo; Teresa Iuvone

The endocannabinoid system plays protective roles against the growth and the spreading of several types of carcinomas. Because estrogens regulate this system both in physiological states and cancer, in this paper we evaluated its involvement in endometrial carcinoma, a well-known estrogen-dependent tumor. To test whether the endocannabinoid system is expressed in endometrial cancer, tissue samples were collected both from 18 patients undergoing surgical treatment for endometrial adenocarcinoma and 16 healthy age-matched controls, and treated for Western blot and immunohistochemical analysis. Moreover, tissues were dounce homogenized and submitted to endocannabinoid measurement by liquid chromatography-mass spectrometry. To evaluate the physiological role of the endocannabinoid system, a human endometrial cancer cell-line (AN3CA) was used and transiently transfected with a plasmid containing the cDNA for the endocannabinoid receptor CB(2). Cells were incubated for 48 h with an agonist (JWH133) (10 mum) or antagonist (SR144528) (1 mum) of CB(2) 24 h after transfection, and cell proliferation was measured by the 3-[4,5-dimethyltiazol-2yl]-2,5 diphenyltetrazolium bromide formazan assay. In human endometrial carcinoma biopsies the expression of CB(2) receptor and the levels of its ligand, 2-arachidonoylglycerol increased, whereas monoacylglycerol lipase, an enzyme responsible for 2-arachidonoylglycerol degradation, was down-regulated. Immunohistochemical analysis revealed that CB(2) was overexpressed only in malignant endometrial cells. CB(2)-overexpressing AN3CA cells showed a significant reduction in cell vitality compared with parental AN3CA cells: incubation with the selective CB(2) antagonist SR144128 restored the viability of CB(2)-overexpressing cells to that of untransfected cells. In conclusion, the endocannabinoid system seems to play an important role in human endometrial carcinoma, and modulation of CB(2) activity/expression may account for a tumor-suppressive effect.


Angewandte Chemie | 2014

A Reversible and Selective Inhibitor of Monoacylglycerol Lipase Ameliorates Multiple Sclerosis

Gloria Hernández-Torres; Mariateresa Cipriano; Erika Hedén; Emmelie Björklund; Ángeles Canales; Debora Zian; Ana Feliú; Miriam Mecha; Carmen Guaza; Christopher J. Fowler; Silvia Ortega-Gutiérrez; María L. López-Rodríguez

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the inactivation of the endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL inhibitors show analgesic and tissue-protecting effects in several disease models. However, the few efficient and selective MAGL inhibitors described to date block the enzyme irreversibly, and this can lead to pharmacological tolerance. Hence, additional classes of MAGL inhibitors are needed to validate this enzyme as a therapeutic target. Here we report a potent, selective, and reversible MAGL inhibitor (IC50=0.18 μM) which is active in vivo and ameliorates the clinical progression of a multiple sclerosis (MS) mouse model without inducing undesirable CB1 -mediated side effects. These results support the interest in MAGL as a target for the treatment of MS.


Journal of Medicinal Chemistry | 2013

Chiral 1,3,4-Oxadiazol-2-ones as Highly Selective FAAH Inhibitors

Jayendra Z. Patel; Teija Parkkari; Tuomo Laitinen; Agnieszka A. Kaczor; Susanna M. Saario; Juha R. Savinainen; Dina Navia-Padanius; Mariateresa Cipriano; Jukka Leppänen; Igor O. Koshevoy; Antti Poso; Christopher J. Fowler; Jarmo T. Laitinen; Tapio Nevalainen

In the present study, identification of chiral 1,3,4-oxadiazol-2-ones as potent and selective FAAH inhibitors has been described. The separated enantiomers showed clear differences in the potency and selectivity toward both FAAH and MAGL. Additionally, the importance of the chirality on the inhibitory activity and selectivity was proven by the simplification approach by removing a methyl group at the 3-position of the 1,3,4-oxadiazol-2-one ring. The most potent compound of the series, the S-enantiomer of 3-(1-(4-isobutylphenyl)ethyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-327A, 51), inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM), whereas its corresponding R-enantiomer 52 showed only moderate inhibition toward hrFAAH (IC50 = 0.24 μM). In contrast to hrFAAH, R-enantiomer 52 was more potent in inhibiting the activity of hrMAGL compared to S-enantiomer 51 (IC50 = 4.0 μM and 16% inhibition at 10 μM, respectively). The FAAH selectivity of the compound 51 over the supposed main off-targets, MAGL and COX, was found to be >900-fold. In addition, activity-based protein profiling (ABPP) indicated high selectivity over other serine hydrolases. Finally, the selected S-enantiomers 51, 53, and 55 were shown to be tight binding, slowly reversible inhibitors of the hrFAAH.


European Journal of Pharmacology | 2013

Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen.

Mariateresa Cipriano; Emmelie Björklund; Alan A. Wilson; Cenzo Congiu; Valentina Onnis; Christopher J. Fowler

Inhibitors of the metabolism of the endogenous cannabinoid ligand anandamide by fatty acid amide hydrolase (FAAH) reduce the gastric damage produced by non-steroidal anti-inflammatory agents and synergise with them in experimental pain models. This motivates the design of compounds with joint FAAH/cyclooxygenase (COX) inhibitory activity. Here we present data on the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen (Flu-AM1 and Nap-AM1, respectively) with respect to their properties towards these two enzymes. Flu-AM1 and Nap-AM1 inhibited FAAH-catalysed hydrolysis of [(3)H]anandamide by rat brain homogenates with IC50 values of 0.44 and 0.74 µM. The corresponding values for flurbiprofen and naproxen were 29 and >100 µM, respectively. The inhibition by Flu-AM1 was reversible, mixed-type, with K(i)slope and K(i)intercept values of 0.21 and 1.4 µM, respectively. Flurbiprofen and Flu-AM1 both inhibited COX in the same manner with the order of potencies COX-2 vs. 2-arachidonoylglycerol>COX-1 vs. arachidonic acid>COX-2 vs. arachidonic acid with flurbiprofen being approximately 2-3 fold more potent than Flu-AM1 in the assays. Nap-AM1 was a less potent inhibitor of COX. Flu-AM1 at low micromolar concentrations inhibited the FAAH-driven uptake of [(3)H]anandamide into RBL2H3 basophilic leukaemia cells in vitro, but did not penetrate the brain in vivo sufficiently to block the binding of [(18)F]DOPP to brain FAAH. It is concluded that Flu-AM1 is a dual-action inhibitor of FAAH and COX that may be useful in exploring the optimal balance of effects on these two enzyme systems in producing peripheral alleviation of pain and inflammation in experimental models.


PLOS ONE | 2012

Phospho-Akt Immunoreactivity in Prostate Cancer: Relationship to Disease Severity and Outcome, Ki67 and Phosphorylated EGFR Expression

Peter Hammarsten; Mariateresa Cipriano; Andreas Josefsson; Pär Stattin; Lars Egevad; Torvald Granfors; Christopher J. Fowler

Background In the present study, we have investigated the prognostic usefulness of phosphorylated Akt immunoreactivity (pAkt-IR) in prostate cancer using a well-characterised tissue microarray from men who had undergone transurethral resection due to lower urinary tract symptoms. Methodology/Principal Findings pAkt-IR in prostate epithelial and tumour cells was assessed using a monoclonal anti-pAkt (Ser473) antibody. Immunoreactive intensity was determined for 282 (tumour) and 240 (non-mlignant tissue) cases. Tumour pAkt-IR scores correlated with Gleason score, tumour Ki67-IR (a marker of cell proliferation) and tumour phosphorylated epidermal growth factor receptor (pEGFR)-IR. For cases followed with expectancy, a high tumour pAkt-IR was associated with a poor disease-specific survival, and the prognostic information provided by this biomarker was additive to that provided by either (but not both) tumour pEFGR-IR or Ki67-IR. Upon division of the cases with respect to their Gleason scores, the prognostic value of pAkt-IR was seen for patients with Gleason score 8–10, but not for patients with Gleason score 6–7. Conclusions/Significance Tumour pAkt-IR is associated with both disease severity and disease-specific survival. However, its clinical use as a biomarker is limited, since it does not provide prognostic information in patients with Gleason scores 6–7.


Bioorganic & Medicinal Chemistry | 2013

Development and characterization of a promising fluorine-18 labelled radiopharmaceutical for in vivo imaging of fatty acid amide hydrolase

Oleg Sadovski; Justin W. Hicks; Jun Parkes; Roger Raymond; José N. Nobrega; Sylvain Houle; Mariateresa Cipriano; Christopher J. Fowler; Neil Vasdev; Alan A. Wilson

Fatty acid amide hydrolase (FAAH), the enzyme responsible for terminating signaling by the endocannabinoid anandamide, plays an important role in the endocannabinoid system, and FAAH inhibitors are attractive drugs for pain, addiction, and neurological disorders. The synthesis, radiosynthesis, and evaluation, in vitro and ex vivo in rat, of an (18)F-radiotracer designed to image FAAH using positron emission tomography (PET) is described. Fluorine-18 labelled 3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate, [(18)F]5, was synthesized at high specific activity in a one-pot three step reaction using a commercial module with a radiochemical yield of 17-22% (from [(18)F]fluoride). In vitro assay using rat brain homogenates showed that 5 inhibited FAAH in a time-dependent manner, with an IC50 value of 0.82nM after a preincubation of 60min. Ex vivo biodistribution studies and ex vivo autoradiography in rat brain demonstrated that [(18)F]5 had high brain penetration with standard uptake values of up to 4.6 and had a regional distribution which correlated with reported regional FAAH enzyme activity. Specificity of binding to FAAH with [(18)F]5 was high (>90%) as demonstrated by pharmacological challenges with potent and selective FAAH inhibitors and was irreversible as demonstrated by radioactivity measurements on homogenized brain tissue extracts. We infer from these results that [(18)F]5 is a highly promising candidate radiotracer with which to image FAAH in human subjects using PET and clinical studies are proceeding.

Collaboration


Dive into the Mariateresa Cipriano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Iuvone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daniele De Filippis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina Scuderi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Esposito

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luca Steardo

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge