Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariateresa Di Stazio is active.

Publication


Featured researches published by Mariateresa Di Stazio.


American Journal of Human Genetics | 2004

Nonmuscle Myosin Heavy-Chain Gene MYH14 Is Expressed in Cochlea and Mutated in Patients Affected by Autosomal Dominant Hearing Impairment (DFNA4)

Francesca Donaudy; Rik Snoeckx; Markus Pfister; Hans Peter Zenner; Nikolaus Blin; Mariateresa Di Stazio; Antonella Ferrara; Carmen Lanzara; Romina Ficarella; Frank Declau; Carsten M. Pusch; Peter Nürnberg; Salvatore Melchionda; Leopoldo Zelante; Ester Ballana; Xavier Estivill; Guy Van Camp; Paolo Gasparini; Anna Savoia

Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.


Haematologica | 2011

Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations

Anna Savoia; Annalisa Pastore; Daniela De Rocco; Elisa Civaschi; Mariateresa Di Stazio; Roberta Bottega; Federica Melazzini; Valeria Bozzi; Alessandro Pecci; Silvana Magrin; Carlo L. Balduini; Patrizia Noris

Background Bernard-Soulier syndrome is a severe bleeding disease due to a defect of GPIb/IX/V, a platelet complex that binds the von Willebrand factor. Due to the rarity of the disease, there are reports only on a few cases compromising any attempt to establish correlations between genotype and phenotype. In order to identify any associations, we describe the largest case series ever reported, which was evaluated systematically at the same center. Design and Methods Thirteen patients with the disease and seven obligate carriers were enrolled. We collected clinical aspects and determined platelet features, including number and size, expression of membrane glycoproteins, and ristocetin induced platelet aggregation. Mutations were identified by direct sequencing of the GP1BA, GP1BB, and GP9 genes and their effect was shown by molecular modeling analyses. Results Patients all had a moderate thrombocytopenia with giant platelets and a bleeding tendency whose severity varied among individuals. Consistent with expression levels of GPIbα always lower than 10% of control values, platelet aggregation was absent or severely reduced. Homozygous mutations were identified in the GP1BA, GP1BB and GP9 genes; six were novel alterations expected to destabilize the conformation of the respective protein. Except for obligate carriers of a GP9 mutation with a reduced GPIb/IX/V expression and defective aggregation, all the other carriers had no obvious anomalies. Conclusions Regardless of mutations identified, the patients’ bleeding diathesis did not correlate with thrombocytopenia, which was always moderate, and platelet GPIbα expression, which was always severely impaired. Obligate carriers had features similar to controls though their GPIb/IX/V expression showed discrepancies. Aware of the limitations of our cohort, we cannot define any correlations. However, further investigations should be encouraged to better understand the causes of this rare and underestimated disease.


Haematologica | 2007

Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations

Anna Savoia; Carlo Dufour; Franco Locatelli; Patrizia Noris; Chiara Ambaglio; Vittorio Rosti; Marco Zecca; Simona Ferrari; Filomena Di Bari; Anna Corcione; Mariateresa Di Stazio; Marco Seri; Carlo L. Balduini

Background and Objectives Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, autosomal recessive disorder induced by mutations of the gene coding for thrombopoietin (TPO) receptor (c-MPL). Patients initially present with isolated thrombocytopenia that subsequently progresses into pancytopenia. Although the mechanisms leading to aplasia are unknown, the age of onset has been reported to depend on the severity of the c-MPL functional defect. To improve our knowledge in this field, we studied clinical and biological features of five new patients. Design and Methods We diagnosed five CAMT patients, identified c-MPL mutations, including five novel alterations and investigated relationships between mutations and their clinical-biological consequences. Results In all cases, platelet c-MPL and bone marrow colonies were reduced, while serum TPO levels were elevated. We also documented that the percentage of bone marrow cells expressing tumor necrosis factor-α and interferon-γ was increased during pancytopenia as compared to controls, suggesting that, as in other bone marrow failure diseases, these inhibitory cytokines contributed to the pancytopenia. Contrary to previously published data, we found no evidence of correlations between different types of mutations and the clinical course. Interpretation and Conclusions These results suggest that therapies, such as hematopoietic stem cell transplantation, which are potentially curative although associated with a risk of treatment-related mortality, should not be postponed even in those CAMT patients whose c-MPL mutations might predict residual activity of the TPO receptor.


Journal of Medical Genetics | 2007

Cleft lip with or without cleft palate: implication of the heavy chain of non-muscle myosin IIA

Marcella Martinelli; Mariateresa Di Stazio; Luca Scapoli; Jlenia Marchesini; Filomena Di Bari; Furio Pezzetti; Francesco Carinci; Annalisa Palmieri; Paolo Carinci; Anna Savoia

Non-syndromic cleft lip with or without palate (CL/P) is one of the most common malformations among live births, but most of the genetic components and environmental factors involved remain to be identified. Among the different causes, MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA, was considered a potential candidate, because it was found to be abundantly and specifically expressed in epithelial cells of palatal shelves before fusion. After fusion, its expression level was shown to decrease and to become limited to epithelial triangles before disappearing, as fusion is completed. To determine whether MYH9 plays a role in CL/P aetiology, a family-based association analysis was performed in 218 case/parent triads using single-nucleotide polymorphism (SNP) markers. Pairwise and multilocus haplotype analyses identified linkage disequilibrium between polymorphism alleles at the MYH9 locus and the disease. The strongest deviation from a null hypothesis of random sharing was obtained with two adjacent SNPs, rs3752462 and rs2009930 (global p value  = 0.001), indicating that MYH9 might be a predisposing factor for CL/P, although its pathogenetic role needs to be investigated more accurately.


Human Molecular Genetics | 2015

Genome-wide association analysis on Normal Hearing Function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss

Dragana Vuckovic; Sally J. Dawson; Déborah I. Scheffer; Taina Rantanen; Anna Morgan; Mariateresa Di Stazio; Diego Vozzi; Teresa Nutile; Maria Pina Concas; Ginevra Biino; Lisa S. Nolan; Aileen Bahl; Anu Loukola; Anne Viljanen; Adrian Davis; Marina Ciullo; David P. Corey; Mario Pirastu; Paolo Gasparini; Giorgia Girotto

Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E−10 and rs7032430, P = 2.39E−09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.


European Journal of Oral Sciences | 2008

Investigation of MYH14 as a candidate gene in cleft lip with or without cleft palate

Marcella Martinelli; Marzia Arlotti; Annalisa Palmieri; Luca Scapoli; Anna Savoia; Mariateresa Di Stazio; Furio Pezzetti; Elena Masiero; Francesco Carinci

Clefts of the orofacial region are among the most common facial defects and are caused by abnormal facial development during gestation. Cleft lip with or without cleft palate (CL/P) is a birth defect with a complex etiology resulting from a mixture of genetic and environmental factors. In the present study we considered myosin 14 (MYH14) as a candidate gene for CL/P. This gene codes for the heavy chain of non-muscle myosin IIC (NMMHC-IIC), maps in the OFC3 region, and shares significant homology with myosin 9, a gene that our group has recently seen to be involved in CL/P. A linkage disequilibrium investigation was conducted with six single nucleotide polymorphisms in MYH14 and a sample of 239 CL/P nonsyndromic patients and their parents. Our family-based investigation provided no evidence of association between MYH14 and CL/P alleles. These data do not support the involvement of MYH14 in CL/P among the Italian population.


Scientific Reports | 2016

PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss.

Giorgia Girotto; Déborah I. Scheffer; Anna Morgan; Diego Vozzi; Elisa Rubinato; Mariateresa Di Stazio; Enrico Muzzi; Stefano Pensiero; Anne Giersch; David P. Corey; Paolo Gasparini

Hereditary Hearing Loss (HHL) is an extremely heterogeneous disorder. Approximately 30 out of 80 known HHL genes are associated with autosomal dominant forms. Here, we identified PSIP1/LEDGF (isoform p75) as a novel strong candidate gene involved in dominant HHL. Using exome sequencing we found a frameshift deletion (c.1554_1555del leading to p.E518Dfs*2) in an Italian pedigree affected by sensorineural mild-to-moderate HHL but also showing a variable eye phenotype (i.e. uveitis, optic neuropathy). This deletion led to a premature stop codon (p.T519X) with truncation of the last 12 amino acids. PSIP1 was recently described as a transcriptional co-activator regulated by miR-135b in vestibular hair cells of the mouse inner ear as well as a possible protector against photoreceptor degeneration. Here, we demonstrate that it is ubiquitously expressed in the mouse inner ear. The PSIP1 mutation is associated with a peculiar audiometric slope toward the high frequencies. These findings indicate that PSIP1 likely plays an important role in HHL.


European Journal of Human Genetics | 2018

TBL1Y: a new gene involved in syndromic hearing loss

Mariateresa Di Stazio; Chiara Collesi; Diego Vozzi; Wei Liu; Michael P. Myers; Anna Morgan; Pio D’Adamo; Giorgia Girotto; Elisa Rubinato; Mauro Giacca; Paolo Gasparini

Hereditary hearing loss (HHL) is an extremely heterogeneous disorder with autosomal dominant, recessive, and X-linked forms. Here, we described an Italian pedigree affected by HHL but also prostate hyperplasia and increased ratio of the free/total PSA levels, with the unusual and extremely rare Y-linked pattern of inheritance. Using exome sequencing we found a missense variant (r.206A>T leading to p.Asp69Val) in the TBL1Y gene. TBL1Y is homologous of TBL1X, whose partial deletion has described to be involved in X-linked hearing loss. Here, we demonstrate that it has a restricted expression in adult human cochlea and prostate and the variant identified induces a lower protein stability caused by misfolded mutated protein that impairs its cellular function. These findings indicate that TBL1Y could be considered a novel candidate for HHL.


European Journal of Human Genetics | 2018

Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss

Anna Morgan; Dragana Vuckovic; Navaneethakrishnan Krishnamoorthy; Elisa Rubinato; Umberto Ambrosetti; Pierangela Castorina; A. Franzè; Diego Vozzi; Martina La Bianca; Stefania Cappellani; Mariateresa Di Stazio; Paolo Gasparini; Giorgia Girotto

Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss.


American Journal of Human Genetics | 2011

Mutations in the 5′ UTR of ANKRD26, the Ankirin Repeat Domain 26 Gene, Cause an Autosomal-Dominant Form of Inherited Thrombocytopenia, THC2

Tommaso Pippucci; Anna Savoia; Silverio Perrotta; Nuria Pujol-Moix; Patrizia Noris; Giovanni Castegnaro; Alessandro Pecci; Chiara Gnan; Francesca Punzo; Caterina Marconi; Samuele Gherardi; Giuseppe Loffredo; Daniela De Rocco; Saverio Scianguetta; Serena Barozzi; Pamela Magini; Valeria Bozzi; Luca Dezzani; Mariateresa Di Stazio; Marcella Ferraro; Giovanni Perini; Marco Seri; Carlo L. Balduini

Collaboration


Dive into the Mariateresa Di Stazio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Callea

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge